고 전압 기술에서의 구조적 특징(Structural details in high-voltage technology)


고 전압 장비를 디자인하고 건설하는 일에 있어서 전계(electric field)의 원리를 정확히 이해하는것이 매우 중요하다. 고전압 기술은 기계적 또는 열적인 측면에서 최상의 조건을 보유하더라도 예상치 못한 여러 문제들로 인해 종종 건설이 지연되기도 한다. 따라서 공학자들은 반드시 이러한 요구 조건을 모두 고려하여 최대한 경제적이고 합리적인 디자인과 건설을 이끌어내야만 한다.


절연 시스템의 기본적인 배열(Basic arrangement of the insulation system)


절연 시스템의 필수적인 요소들이라고 할 수 있는것은 절연체의 종류와 그것의 알맞은 개수이다. 두 전극 사이 연결고리의 전위차는 시스템의 정확한 통제를 위해 반드시 전기적으로 절연되어져야 한다. 고체 절연체들과 액체 또는 가스 절연체 사이에 위치한 경계 표면은 절연 시스템에서 특히 중요한 부분으로 여겨진다.


a) 단일 절연 재료 구조(single material configuration)


외부 지역이나 플라스틱 케이블의 단일 절연 구조의 예는 바로 공기 (air)이다. 대칭적 그리고 비대칭적인 전극의 구조는 대게 매우 다른 행동들을 보여준다. Figure 3.1.-1은 대칭과 비대칭 전극의 전계 강도 E (field strength)를 보여진다. 그림에서 보여지듯이 같은 간극(spacing: s)에서는 대칭적인 구조가 비대칭 구조보다 더 나은 전계의 분배모습을 모여준다 (두 경우 모두 일정한 전압 U 가 적용되있다고 가정). 또한 대칭 구조에서 더 낮은 Emax의 값을 가지는 것을 보여준다. 



위의 구조를 이해하여야 하는 중요한 이유는, 전계 분배의 강도를 통제함으로써 수직적 간극이나 지지적인 절연체의 간극을 조절함으로써 절연 파괴 전압을 증가시킬 수 있다. 그리고 위쪽의 위치한 전극을 이동함으로써 간극 s의 간격을 조절 할 수 있다. Figure 3.1-2는 비균일 전계를 동반한 충격 전압하에서의 절연파괴 전압을 보여주여 이러한 절연 파괴 전압은 h 길이의 증가와 함께 같이 증가하는 경향을 보인다.



b) 여러 절연 물질의 구조(Multi-material configurations)


대부분의 절연 시스템에서는, 여러개의 절연 재료가 공존하며 절연 경계 표면은 절연체 사이에 존재하게 된다. 이러한 경계면에서 발생하는 힘의 방향은 Figure. 3.1-3에서 보여지는 바와 같으며 전계의 탄젠트(tangential) 성분의 전계 강도(electric field strength)는 일정하다.



일정한 절연체 이동 조건으로 인한 수식은 다음과 같다.



경계 표면은 최소한으로만 전기적 응력(stress)가 작용하게 되는데 그 이유는 불순물들과 습도의 존재때문이며 이러한 존재는 레이어(layer)를 오염시킬 가능성이 있다. 따라서, 절연 시스템의 건설적인 조건에서 경계 표면에서 낮은 전계 강도의 유지는 매우 중요하며 특히 tangential 성분의 전계 더 주의깊게 고려하여야 한다. 


만약 표면 경계가 등위적 표면(equipotential surface (Et = 0))에서 동시에 존재하게 되면 특이한 케이스가 유발되는데 이러한 케이스를 횡 경계 표면(transverse boundary surface)이라고 부른다. Figure 3.1.-4 는 트랜스포머에서의 절연 경계(barrier)를 보여준다. 제조 과정에서 이러한 경계(barriers)들은 몰딩처리 되는데 그 이유는 가능한한 등위적 표면의 형태를 유지하기 위함이다. 


종 경계 표면(longitudinal boundary surface)에 관해서는, tangential 요소인 전계 강도 Et는 제한적인 값을가지는 반면, 보통 요소인 En=0의 값을 가진다. 경계 표면은 전계 라인을 따르지만 전계 분배는 고형 절연체에의해 영향을 받지는 않는다.



Figure 3.1.-5 지지 절연체의 구조의 예.


a) 끝쪽의 전계는 돌출 전극의 방식으로 균일화 되었다.

b) 절연체의 형태가 전계로 적용된 모습.


기술적 디자인 측면에서, 전계 강도(field strength)의 보통 요소들뿐만 아니라, tangential 요소들을 제한적 값으로 부터 항상 보호 할 수 있는것은 아니다. 이것을 기울어진 경계 표면(inclined boundary surface) 이라고 한다. 예를 들어, Figure 3.1-6a 처럼 전극과 함께 하는 절연체가 고형의 절연체 안으로 내장된 것을 고려해보자



이 상당히 괜찮은 조건의 구조는 절연체 몸체 중심부의 지름(diameter, *dotte line으로 표시됨)를 확장시킴으로써 더 괜찮은 모델로 향상될 수 있다. 그 이유는, 지름을 늘림으로써, tangential 전계 강도는 줄어들 수 있기 때문이다. Figure 3.1-6b에서 처럼, 표면에 전극이 배열된 구조는 상당히 불안정한데 그 이유는 상대적으로 매우 높은 tangential 전계 강도(field strength) 때문이다. 그리고, 이 경우에는, 부분 방전(partial discharge)는 간신히 예방될 수 있는 정도이다.


c) 절연 구조(Insulating configurations)


전체적인 시스템을 통틀어 견고한 연결이 완료되지 않은 곳의 예로써는 solid insulated coaxial cable 또는 epoxy resin instrument 트랜스포머 등이 있다. Figure 3.1-7에서 보이는것 처럼, 4가지의 다른 절연 구조가 구분되어 진다.


a) 압축적이고 휘는 힘의 송전을 위한 지지 절연체.

b) 송전시 장력을 위한 서스펜션 절연체.

c) 전극의 견고한 관통을 위한 부싱 절연

d) ground된 지역으로 부터의 voltage-carrying electrode의 견고한 lead-out.


야외 구조에서는, 절연체에는 방수 물질이 적용되는데 그 이유는 creepage 경로(연면거리) 를 증가시키기 위함이며 그 다음은 우천시 수로(water channel)의 형성을 예방하기 위함이다. 방수 물질의 형태는 절연체 제조의 사용된 재료 및 예상되는 공기 오염도에 의존하게 된다. 


Creepage 경로 값의 가이드 라인의 따르면 정격전압에따라 2~4kV/mm 정도가 예상된다. 방수 물질의 전형적인 프로필은 porcelain(애자 또는 자기: 도자기 느낌)와 플라스틱 절연체이다(figure 3.1-8). 




플라스틱 절연체에 관해서는, 슬림한 형태 방수 물질이 사용되는데 특시 소수성(hydrophobic)의 물질이 적용된다. 이러한 적용은 creepage 경로를 오염 방어능력의 손실없이 줄일 수 있다. 가스 절연의 설치에 관해서는, 지지 절연체(support insulator)는 그라운드된 메탈 하우징내에서 lead의 간격의 유지가 요구된다.



정격 전압 110kV 이상에서는 타입(c)의 절연체가 선호된다. 3 phase나 복잡한 형태의 절연시스템에서는 타입(d)의 형태를 고려하여야 한다. 특히 고 전압 가스 절연 시스템을 위해서는 지지 절연체의 모양은 반드시 경계 표면에서의 전계 곡면을 고려하여 선택 되어야 한다.


출처:

D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


유기 물질(Organic materials)은 탄소를 포함하고 있으며, 이러한 탄소는 긴 체인형태나 링의 구조로 형성될 수 있다. 미네랄 오일과 식물성 오일 모두 자연적 유기 용액 그룹에 속한다. 파라핀(paraffin), 비투먼(bitumen) 들은 천연오일의 성분으로써 고체 그룹에 속하고 추가로 왁스(wax), 레신(resin), 나무(wood), 섬유소 재료들(종이, 실크, 솜, 삼배)등이 있다. 고 전압 공학에서 중요한 물질은 미네랄 오일, 종이 그리고 제한적이긴 하지만 나무와 비투먼(bitumen)이다.


미네랄 오일(Mineral Oil)


미네랄 오일은 천연 오일(crude oil)의 가스 제거, 탈수, 불순물 제거 후 증류법에 의해 얻어진다. 주로, 나프탈렌과 있는 포화 탄화수소 또는 알케인 구조와 함께하는 포화 탄화수소가 사용되는데 그 이유는 포화되지 않은 아로마틱 탄화 수소에 비해 화학적으로 더 안정적이기 때문이다. 다음은 이에 관련된 몇몇의 예를 보여준다.



아로마틱 탄화수소의 제거는 정제 과정을 통해 제거 될 수 있다. 잘 알려져있듯이 절연 오일의 전기적 특성은 수분과 가스 함량의 증가로 인해 왜곡되는 현상을 보여 준다. 따라서, 절연에 사용되는 오일은 반드시 고 전압 장비에 적용 되기전에 사전의 처리과정이 필요하다. 이러한 사전 처리 과정은 정제 공장에서 가스 제거와 건조 과정을 통한다.


넓은 지역의 얇은 필름이 생산되는 곳에서 표면 가스제거 과정은 보통 적용되며, 이 과정동안, 오일은 약 50℃~60℃ 온도 및 10^-2mbar의 진공상태에 노출되게 된다




Figure 2.5-1은 오일 정제 플랜트의 기본 셋업을 보여준다. 정제된 오일은 절연 파괴 전압을  50 ... 60kV 정도로 가져야 하며, 이 값은 절연 파괴 전계 강도 200kV/cm 정도에 해당한다(breakdown field strength of about 200kV/cm).


절연 오일은 수분을 흡수하는 성질때문에 변질(노쇠화)위험에 놓여 있다. 열과 산소의 결합된 효과로 인해, 산화 물질들이 오일안에 용해될수 있는 형태로 생성된다(예, acids: 산). 용해되지 않는 물질 또한 생성되는데 슬러지(sludge: 끈적 거리는 진흙같은 물질)의 형태로 생성된다. 오일의 산화는 구리의 촉매 작용으로 인해 가속화 된다. 이러한 이유로 순수 구리(bare copper) 전도체가 절연 오일에 잘 사용되지 않는다. 중립화와 비누화의 수치는 노쇠화 상태를 특정화 하는데 매우 유용하다. 그리고, 중립화 수치는 potassium hydroxide(KOH) 제공함으로써 1 g 의 오일을 포함한 자유 산성 물질들을 중화 시킨다. 반면에, 비누화 수치는 KOH의 양을 설명하고 이  KOH는 자유 산성 물질 그리고 경계 산성물질들을 중립화 시키기때문에 중립화의 수치 또한 포함한다.



Figure 2.5-2는 변질된 오일이 신선한 오일에 비해 방출 요인(dissipation factor)이 더 나쁘다는 점을 보여준다. 따라서, 트랜스포머 같은 절연 오일이 사용된 큰 규모의 장비들은 반드시 오일의 변질 상태를 주기적으로 확인하여야 한다. 이러한 이유로, 절연에 사용되는 오일은 절연 파괴 전계 강도, 방출요인(dissipation factor), 불순물의 함유량이 조사되어야 한다. 만얀 필요하다면, 오일의 정제 과정이 반드시 필요하며 또는 사용된 오일을 교체하여야 한다. 오일의 교체는 중성화 값이  0.5 mg KOH/g oil을 초과하거나, 용해성의 슬러지가 chloroform(CHCl3)클로로포름(마취제의 일종))에서 발견되었을때 실행한다. 


오일의 산화 안정성은 변질(노쇠화) 억제제를 참가하면서 증가시킬 수 있다. 이런 억제제들은 오일 분자에서 깨진 결합과 반응하게 되고 안정적이고, 비활성적이면서 무해한 화합물을 형성하면서 산화 과정을 방지할 수 있다. 억제제들은 이런 진행 과정에서 고갈되게 되므로, 반드시 시간에 맞춰서 다시 채워넣어야 한다. 


미네랄 오일의 응고점(solidifying point)은 -40 ℃이며 전기적 특성은 불순물에 따라 변할 수 있다. 절연 파괴 전계 25 kV/mm의 강도는 약 mm 범위의 간극에서는 유효하다. 얇은 레이어의 절연 파괴 전계의 강도는 약 100kV/mm까지 측정되었으며, 필름은 μm 범위의 간극에서 300kV/mm 정도까지 측정되었다. 다시 말해서, 낮은 절연 상수와의 결합은 오일-종이 절연시스템이 왜 우수한 전기적 강도를 가지고 있는지 설명해 준다.


전기적 방전이 일어날 경우는, 오일은 가스의 형태로 분해 된다. 아크(arc)상태에서는, 오일의 열적 기능저하는 약 60%의 수소와 10%의 다른 가스들, 25%의 포화, 불포화 탄화 수소들의 형태로 일어난다. 기능저하 요인인 수소의 높은 함량은 아크의 집중적인 냉각을 가져온다. 


전극의 예리한 끝부분에서 (예: 캐패시터에서 메탈 호일(metal foils)의 끝부분), 지속적인 방전은 오일 분자들이 고체 물질의 형태로서의 중합반응을 야기 시킬 수 있다(X-wax formation). 이러한 결과는 액상의 요소들보다 더 낮은 전열 파괴 전압(lower breakdown voltage) 값을 가지게 되고 이로 인해 절연 파괴를 시작하게 된다.


열적인 성분에서, 비열(specific heat)과 장기간의 열적 안정화는 특히 매우 중요하다. 절연적인 요소를 제외하고 오일은 높은 비열을 장점을 가지기 때문에 빈번하게 냉각제로도 사용된다. 그러나 장기간적인 측면에서의 열적 안정화는 오직 약 90℃까지만 이루어 지기 때문에 이로 인해 많은 장비들이 제한된 정격 전압(permissible rated power)을 가지게 된다.


절연 물질로서 오일의 응용은 종이 형태의 섬유소나 합판(press board)와의 결합을 통해 이루어진다. 오일을 함유한 종이는 전기적으로 매우 강하며 지속적인 응력 노출에서도 절연능력을 증명했다. 이러한 오일을 함유한 종이는 고 전압 기술에서 매우 중요한 절연 물질로 여겨 진다. 이 러한 기술의 존재로 인해 현재의 트랜스포머, 부싱, 캐패시터, 케이블이 많은 발전을 이룰 수 있었다.


출처:

D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.

가스, 유체, 고체 절연 물질과 관련된 모든 절연파괴 이론들이 가정하는 것은 이온화 과정에 의해 전도성이 생긴다는 것이다. 고 진공 (p≤10-5mbar)에서, 평균 자유 경로 ( mean free path λ)는 매우 크며, 가스 나머지 부분에서의 출동 과정은 절연 파괴 과정에 있어서 무 의미 해진다. 오히려, 전극에서의 매커니즘이 절연 파괴 행동에 있어서 더 중요하게 여겨진다.

만얀 직류나 교류 전압이 진공 간극에 적용된다면, 예비 전류는 절연 파괴 전압보다 훨씬 더 낮은 위치에서 시작하게 되고, 전압의 증가와 함께 기하급수적으로 증가하게 된다.



$S:\ current\ density\left(A/cm^2\right)$S: current density(A/cm2)
$E:\ field\ strength\left(V/cm\right)$E: field strength(V/cm)
$W_a:\ work\ function\left(eV\right)$Wa: work function(eV)

전극으로부터의 넓은 영역의 전계 방사(field emission)에 관해서, 전류가 측정될 수 있으며 이 전류는 예비 전류보다 몇 배 더 크다. 이러한 현상은 마이크로픽(micropeak)에 의해 전극의 표면에서 나타나며 부분적으로 전계(electric field)를 강화시킨다.

많은 절연 파괴 가설들이 진공 간극(in vacuum gaps)에서 매커니즘을 설명하기 위해 발전되어 왔다. 캐소드 절연 파괴 가설은 전계 방사 전류가 캐소드에 마이크로픽에서 일정 전류 밀도를 넘어서 많은 열 방출로 이끌 수 있으며 이러한 열 방출은 마이크로픽이 폭발적으로 증발함으로 생긴다. 금속에서는, 이온화 충돌로 인한 기포들이 발생하게 된다. 만약 충분한 대전 캐리어의 증식에 도달하게 되면, 진공 간극에서의 절연파괴는 이온화된 금속 기포 운집을 따라서 발생하게 된다.

애노드 절연파괴 가설측면에서는, 전계에 의해 캐소드로부터 방출된 전자가 전계에서 가속화 되고 (에너지 W=eU), 이러한 에너지가 애노드에 열을 가함으로써 애노드 물질의 증기화에 관연하게 된다. 이러한 급속 증기는 충동 과정에 의해 이온화 되게 되고 전자의 방출을 캐소드로 돌려 보내는 업무에 힘을 실어 주게 된다.

애노드에서 충분히 높은 증기화 비율과 관련해서, 메탈 증기 운집안에서 가스 절연 파괴가 일어나게 된다. 또 다른 가설에 따르면, 진공 절연 파괴는 자유 금속 분자에 의해 시작 된다고 하며 이러한 자유 금속 분자는 전극에 잔존하는 것들이며 전계의 힘에 의해 분리되고 가속 된다 (반대쪽 전극에 충돌).



진류 전압의 스트레스와 관련해서 균일 전계 또는 아주 약한 비균일 전계에서의 진공의 간극 (s) 에서의 전기적 강도는 다음의 수식을 만족한다.

$U_d\sim \sqrt{s}$Ud~s

위의 수식은 충동 전압(impulse voltage)와 관련해 짧은 절연 파괴 시간영역(td<0.1μs)에서 확인 되었으며 충동전

압-시간 커브의 가파른 증가가 관측 되었다. Figure 1.5-1에서 보여지는바와 같이 전극 물질은 전계 강도에 영향을 끼친다. 동일한 조건하에서, DC 절연파괴 전압은 전극 재료의 높은 녹는점과 함께 증가한다. 이 행동은 앞서 언급한 여러 가설들에 해당되는 점이다. 전극을 냉각 시키는 것은 높은 녹는점 온도와 같은 효과를 가지며 구조의 전기적 강도를 증가 시킨다 (Fig 1.5-2).

직류 전압 하에서의 절연파괴는 애노드의 아주 강한 부식을 일으키게 된다. 반대로, 캐소드의 표면 마감은 향상되게

된다.



위의 두 그림은 진공 절연파괴 후에 애노드와 캐소드의 전극 표면을 현미경으로 관측한 것이며 그림에서 보여지듯이 애노드 부분에서는 눈에 띄는 침식이 일어난 것이 확인된다.

균일 전계에서의 AC스트레스가 작용하면, 캐소드와 애노드 두 전극 모두 다 동일하게 침식이 일어나게 되는데 그 이유는 전극들이 애노드와 캐소드역할을 번갈아 가면서 맡기때문이다. 이 경우 두 전극 모두에서 침식이 일어나게 때문에 파괴 전압은 dc 스트레스가 작용할때 비하여 낮은 편이다.

반면에 비균일 전계에서는, ac 와 dc 스트레스에서 파괴전압은 모두 동일하다. 그 이유는, 교류 파괴 전압은 (-) 극성의 전극(작은 반경의 곡면을 가지고 있음)에 관하여 일어나는 것을 선호하기 때문이다. 그리고 눈에 띌 만한 침식은 극 반경의 곡면을 가지는 전극에서만 발견되어 진다. 따라서, 비슷한 표면과 절연파괴 전압이 AC와 DC 전압 모두에게서 관측 된다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


절연유가 적용되는 대부분의 경우에서는 더 많은 고려사항들이 존재하게 된다. 예를들어 절연유는 트랜스포머의 와인딩과 코어의 열을 식히는데 이용되고 또한, 서킷브레이커의 아크현상(열이나 불꽃을 나타내는 현상)을 끄기 위해서도 쓰인다. 또한, 내장된 캐패시터에서, 절연유는 절연지의 절연 상수를 증가 시키는 역할을 한다.

절연유의 사용은 기술적인 측면에서 기체 그리고 고체 절연 기술과는 조금 다르다. 액체의 절연은 불순물에의해 상당한 영향을 받으며 수명 또한 공간 전하(space charge)의 영향을 크게 받는다. 절연유의 절연파괴는 확실하게 통일된 이론은 없으므로 여러가지 사항을 복합적으로 고려하여야 한다.

A) 절연유 기술적 구조의 전기적 강도(Electric strength of technical configuration with insulating liquids)

고 전압 기술에서는, 미네랄 오일이 절연물질로써 지배적이다. 즉, 절연 지지대(소프트 페이퍼, 프레스보드 등) 부근에서 절연 활로를 연다. 미네랄 오일은 매우 낮은 점성을 가지고 있어서, 트랜스포머의 절연 오일로써 많이 쓰인다. 이러한 점성도는 온도에 매우 의존적이기때문에 다른 적합한 증류액과 섞으므로써 냉각이나 오일을 머금게(침투) 함에 있어서 용이하다.

미네랄 오일은 천연 오일로 부터 추출되며 이러한 절연유는 각기 다른 성질을 가지는 여러 탄화수소의 혼합체이다. 대형의 기술 시스템(트랜스포머 같은)이나 대기와 접촉이 일어나는 몇몇에 경우에 절연유는 불순물이 용해된 가스나 액체의 형태로 가지고 있게 된다. 뿐만아니라, 전도가 가능한 입자나 전도가 불가능한 입자(fibre pieces, sludge) 또한 포함하게 된다.

많은 실험들이 보여주기를 이러한 불순물의 존재는 절연파괴의 특성에 있어서 이상적으로 순수 절연액에 비해서많은 영향을 준다. 사실, 액화된 가스들은 순수 절연액을 대표하는데, 매우 낮은 온도의 질소액이 이에 해당한다(LN2). 액화 헬륨 또한 저온 기술에서 사용될 가능성이 있다.

합성 절연액인 chlorinated diphenyls (염소처리된 디페닐)은 파워 캐패시터에서 절연종이가 머금게 하기 위해 (함침)쓰인다. 미네랄 오일과 비교하였을때, chlorinated diphenyls은 거의 2배 더 큰 절연 상수를 가지고 있었다.

추가적 이점으로는, 불이 잘 붙지 않으며, 예전에는 배전(distribution) 트랜스포머 안쪽에 사용되기에 적합 했다. 하지만 오늘 날에는, 에폭시 레신(epoxy resins)과 함께 건식 트랜스포머에 사용된다.

아래 표는 몇몇의 절연액의 특성을 포함하고 있다.



불순물에 대한 의존성을 제외하고, 전기적 강도는 또한 다른 요소들의 영향을 받는데 특히, 압력과 스트레스(stress duration) 작용 기간이 이 요소들중 하나에 해당한다. 충동 전압의 스트레스작용 동안, 절연 파괴 전계 강도는 많은 영향을 받게 된다. 균일 전계에서의 절연체는 아마 최대 Ed=200 kV/cm 의 절연 파괴 전계를 가진다. 트랜스포머안에 전극의 충동 전압-시간 커브(Figure 1.4-1)는 스트레스 작용효과에 관하여 생각해 보게 만든다.



불순물을 포함한 절연액에 관하여 전형적인 절연 파괴 요건은 큰 확산과 불규칙적인 선-방전(pre-discharge)의 발생 빈도이다(균일 전계 상태도 포함). 더욱이, 순수 액체 간극들에서는(in pure liquid gaps), 절연 파괴는 상당한 자가 회복 작용(self-healing)과 함께 발생한다.



위의 그래프는 절연파괴 전계 강도 Ed의 측정결과 값과 50Hz에서의 분산 요소 tanδ 를 수분 포함 함수 v에 관하여 나타내어졌다. v=50*10-6 을 초과한 지점에서의 Ed 의 감소는 용액이 유화되는 변천을 겪는데 영향을 끼치게 된다.

200kV/cm의 절연파괴 전계 강도에서는 잔존하는 수분 함량은 v<10-5 이어야 한다. 용해된 수분 기포와 대조적으로, 용해된 가스는 보통 절연액에 전기적 강도에 큰 영향을 미치지 않는다 (산소에 의한 노쇠화 과정은 별개). 그러나, 만약 평형생태를 벗어났을때 과포화 상태는 매우 중요한 부분이 될 수 있다. 다시말하면, 용해된 가스들이 아주 작은 버블형태로 나타나게 되는데 이러한 버블들은 기계적 진동 (강제 냉각 순환 등)이나 고 전계 강도에 의해 발생된다.

액체의 절연 재료들은 함침제(impregnants)로 캐패시터의 절연체, 소프트 페이퍼, 그리고 트랜스포머의 프레스 보드에 쓰인다. 뿐만 아니라, 오일이 함유된 페이퍼 케이블에도 적용 가능하다. 그리고, 액체의 절연 재료들은 매우 높은 전기적 강도에 도달이 가능하지만, 효과적인 대류 냉각(convection cooling) 측면에서 비용적으로 효율적이지 못하다.

다음의 표는 각각의 물질들이 20oC에서 가지고 있는 특성들을 보여준다.



위의 표에서 보여지는 혼합된 절연체들은 매우 강한 전기적 강도를 가지며 약 100kV/cm 또는 그 이상의 전계 강도까지 허용이 가능하다. 아주 짧은 순간동안은, 파괴 전계 강도 Ed의 스트레스 값이 약 최대 1MV/cm 까지 측정될 수 있다. 그러나 특히, 매우 높은 주변 온도 상황에서는 열에 의한 절연 파괴상황을 반드시 고려하여야한다. 추가로, 극도록 짧은 순간같은 특이한 경우에는, 심지어 수분또한 매우 높은 절연파괴 전계 강도를 보유하게 된다.

실험적 조건에 따라서, 약 mm 단위의 공간에 대해서 100~500kV/cm의 전계 강도 값을 가질 수 있다 (※작용 시간은 10μs 를 넘지 않는다). 절연용액을 기술적 측면으로 바라본다면, 전기적 강도는 압력에 비례해 매우 급격하게 증가한다. 이러한 특성을 고려해 본다면 매우 높은 절연 상수 εr=약 80을 가지고 있는 물 또한 플래시오버(flash over)의 위험성에 관해서 잘 들어 맞는다고 볼 수 있다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


부분 방전(PD: partial discharge)는 전기적 형태의 방전으로써 절연의 일부분을 전기적으로 연결시키며 보통 펄스의 형태를 가지고 있다. 불완전한 절연파괴의 형태와 함께 가스로 채워져있는 절연체 내부의 기포에서 발생하거나 작은 반경의 곡면을 가지고 있는 전극이, 고형의 절연체에 완전히 내장되지 않았을때 발생한다.

PD는 오랜기간동안 방치되면 완전한 절연파괴로 발전될 수 있으며 특히 교류전압의 스트레스가 발생하는 동안 더 주의깊게 다뤄야 한다. 부분방전과 관련된 유요한 매커니즘은 생각보다 복잡하다. 따라서 부분방전의 매커니즘을 설명할때는 여러 사항들을 동시에 고려하여야 한다.

플라스틱같은 균일한 절연 물질안에서의 가스로 채워진 공간은 취약 지점으로 고려되여야 하며 절연기술에 있어서 달갑지 못한 부분이다. 하드보드(hardboad)처럼 라미네이트된 절연물질에서는 이러한 부분방전은 피할 수 없다.

이러한 빈 공간(cavities)들은 고강도 전계 응력때문에 균일한 절연체에서도 발생된다. 이러한 PD의 경로로는treeing(나뭇가지처럼 뻗어나감)이 이에 해당된다.

Leading 전계는 오직 작은 반경이 곡면을 가진 전극 부근의 방전을 유지할 정도로만 충분히 강하다. 따라서 이 사실에 의하면 완전한 절연파괴로의 즉각적인 변화는 지연되게 된다.

고형의 절연체 안쪽 또는 표면쪽에서의 부분 방전은 기체의 절연 관점에서 불완전한 절연 파괴로 고려되며 전형적인 형태의 부분방전의 예시가 아래 Figure. 1.3-14에 나타나있다.



완전한 절연파괴로의 빠른 변화는 고형의 절연 물질에 의해 방지되는데, 즉, 방전이 가능한 가스의 제한된 부피와 방전 전류의 제한에 의해 방지된다. 너무 얇은 막의 두께의 관해서, 완전한 절연 파괴는 방전 경로들(보통 가스로 체워져있는 기포 또는 미세한 공간)을 따라서 일어나게 된다.

A) 부분 방전에 의한 절연파괴 매커니즘(Mechanisms of partial discharge breakdown)

절연체에 가해지는 장기적인 전기적 응력동안에는, 내부의 부분 방전 (internal partial discharge)이 절연체에 해를 입힐 수 가 있다. 부분 방전에 의한 절연체의 노쇠화는 교류 전압의 응력에 의해 발생하는데 점화 과정에서의 주기적 반복 현상때문이다. 또한, 부분 방전의 기포는 고 전압에서 상당한 전기적 강도의 변화를 야기시킬 수 있지만, 장기간에 걸쳐 이루어 지지는 않는다.

이 부분방전을 통해 일어나는 가장 중요한 결과들은 다음과 같다.

-heating(열 생성)

-erosion(침식, 노쇠화)

-chemical effect(화학적 효과)

-charge carrier injection(대전 캐리어의 주입)

이러한 부분 방전은 항상 추가적인 절연의 손실, 지정된 이온화의 손실들을 가져오며 이러한 부분 방전들은 부분적으로 집중해서 나타나며 또한 점 같은 열원(heat source)으로 대표된다. 많은 이미 시행된 추정값들이 보여주는것은 오직 높은 주파수(MHz 범위) 경우에서만, 부분 방전은 초과된 부분적인 열을 유발 시키며 결국엔 열에의한 절연 파괴로 이끌게 된다.



부분방전이 있는 절연체의 가스로 채워진 공간에서는, 전자 그리고 이온의 가속도는 쿨롱의힘(Coulomb forces)에 의해 일어난다. 절연체 벽의 특수 부분에서의 이온에 의한 충격은 침식을 유발하게 되는데, 즉, 물체의 기계적인 패임현상을 일컫는다.

반면에, 부분방전과 관련해서 공기로 채워진 기포(크리스탈라인 물질의 경우)는 현미경을 통해 전자의 움직임을 관찰 할 수 있다. 본래 매우 매끄러운 표면이 후에 거칠게 변할 수 있으며, 이러한 과정은 부분방전 경로를 생성하는 시발점이 될 수 있다.

인공 기포를 포함하고 있는 플라스틱 절연 물체의 부분 방전의 관한 시험 또한 많이 시행되어왔다. 만약 부분방전에 노출된 절연체가 기계적으로 해를 입지 않았다면 초기 도입 주기는 반드시 나타나야 한다.

기계적으로 준비되거나 부분 방전에 의해 충분히 침식된 부분에서는 경로 형성과 함께 파괴적인 단계가 비교적 빠르게 시작된다. 반면에, 균일한 침식한 잔존하는 절연체두께의 감소 결과로부터 오는 부분 방전에의한 절연파괴는 아직까지 발견되지는 않았다.

또한 절연파괴와 연관된 화학적 작용은, 절연체 표면에서 부분방전을 야기 시킬 수 있다. 기본적으로 적당한 환경적 영향이 존재하는 한, 모든 화학적 반응들은 고분자(macromolecules)에 있을 가능성이 있다. 예를 들어, 높은 습도와 온도에서는, 에폭시 레신(epoxy resins)은 상대적으로 쉽게 가수 분해 된다. 추가적으로, 공기중에서의 전기적 방전은 물질의 부식을 제외하고 NO(nitrous oxide)는 수증기와 함께 HNO3를 형성한다. 또한, 가스로 채워진 기포와 고형의 절연체에서의 화학적 변화는 이온화 과정동안 일어나는 짧은 파장의 방사(radiation)에 의해 촉진 될 수 있다.

또 다른, 절연체의 노쇠화 매커니즘은 대전 캐리어의 절연체로의 주입이 해당되는데 (대게, 전자의 주입) 이러한 대전 캐리어들은 절연체를 뚫고 지나가며 트랩에 갇히게 된다. 즉, 트랩으로 부터 전도대로에 이동이 쉬워지게 된다(절연이 실패될 가능성이 높아짐).

PE foil에서의 공기 기포로 인한 결과는 이미 많이 증명 되어왔다. 이 상태에서는, 절연체가 전자의 파장에 의해 관통당하게되며 결국 높은 전도율을 이끌어 낸다. 따라서, 이로 인해 열적으로 매우 불안정해지게 된다(Fig 1.3-14c).

반면에, Figure 1.3-14d에서 처럼 절연체 표면에서 에너지가 풍부한 방전의 시작점으로 부터 전자들은 높은 공간 전하 field 강도의 도움으로 인해 절연체를 통과할 수 있다. 그리고 이러한 경우는 결국 표면 아래에 부분방전의 경로를 유발하게 된다. 만약 이러한 상황이 계속 지속된다면, 완전하지만 변칙적인 절연 파괴(anomalous breakdown)를 이끈다(아래 그림 참조).



출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


절연 물질에서는, 절연 손실 Pdiel이 발생하는데 이러한 절연 손실에는 전도, 극성, 그리고 이온화 손실로 구성되어있다. 이러한 손실들은 절연체의 온도를 증가시킬 뿐만 아니라 절연체를 스스로를 온도의 대한 의존성을 부여하게 된다. 절연체 손실이 온도와 함께 급격히 증가하는 영역에서는, 고체 절연체의 과열 같은 위험이 존재하며 이러한 과열 문제는 절연 파괴로 이어질 수 있다. 이러한 열에 관한 기초적인 절연파괴 메커니즘을 thermal breakdown이라고 하며 1922년에 K.W. Wanger에 의해 설명되었다.

A) 절연 손실의 온도 의존성(Temperature dependence of dielectric losses)

교류 전계에서의 구체적인 절연 손실은 다음과 같다

$P_{diel}^'=E^2\varpi \varepsilon _0\varepsilon _r\tan \delta $Pdiel=E2ϖϵ0ϵrtanδ

손실 요인 εrtanδ 절연체의 절연 손실의 크기가 없는 값이며 그 범위는 약 10-3~10-1 정도이다.

직류 전계에서의 수식은 다음과 같다.

$P_{diel}^'=E^2k$Pdiel=E2k

위의 두 경우 모두, 온도의 대한 의존도는 다음과 같이 표현될 가능성이 있다.

$P_{diel}^'=E^2p\left(T\right)$Pdiel=E2p(T)

다시 말하면,

$교류\ 전압과\ 관련해서:\ P\left(T\right)=E^2\varpi \varepsilon _0\varepsilon _r\tan \delta $  : P(T)=E2ϖϵ0ϵrtanδ
$직류\ 전압과\ 관련해서:\ P\left(T\right)=k$  : P(T)=k

온도 의존도:

$P\left(T\right)=p_0e^{\sigma \left(T-T_0\right)}$P(T)=p0eσ(TT0)
$T_0\ and\ p_0\ :\ reference\ quantities$T0 and p0 : reference quantities
$\sigma :\ the\ loss\ increase$σ: the loss increase

B) 열에 의한 절연파괴 모델(Model to describe thermal breakdown)



Figure 1.3-9에서는 절연체의 온도 T 와 구체적인 절연 손실 Pdiel은 부분적으로 일정하다고 고려된다. 전극 1과 2사이의 쿨링 파워 Pab 와 함께하는 열전도가 주변 온도 Tu에 대해서 비례한다고 생각해보면

$P_{ab}\sim \left(T-T_u\right)$Pab~(TTu)

안정적인 동작 지점은 반드시 다음 조건들을 만족시켜야 한다(Fig 1.3-9b).

$P_{ab}=P_{diel}\ as\ a\ prerequisite\ for\ static\ conditions$Pab=Pdiel as a prerequisite for static conditions
$\frac{dP_{ab}}{dT}>\frac{dP_{diel}}{dT}\ as\ a\ prerequisite\ for\ stability$dPabdT>dPdieldT as a prerequisite for stability

만약 안정적이 동작 지점이 존재하지 않는다면, 열에 의한 절연파괴가 시작된다. 뚜렷하게 보이듯이 교차점 A는 안정적인 동작 지점인 반면, 교차점 B는 불안정한 포인트이다. 주변 온도 Tu를 증가시키거나 전압 U를 증가시킴으로써, 포인트 A와 B는 마지막에 C 지점에서 합쳐지게 된다. 상응하는 전압은 중요한 전압 Uk로 표시되었으며 이는 열에 의한 절연파괴 전압이다.

질적인 측면에서 위에 Figure는 절연체 내에서 부분적으로 일정한 온도라고 가정되었다. 그러나 절연파괴 수행에 있어서 양적인 측면은, 절연체에서의 온도 분배 현상은 반드시 고려될 사항이다.



균일 전계에서 향상된 모델은 Figure 1.3-10에 보인다. 이 모델은 전극 1, 2의 주변 온도가 일정하다고 가정되었다. 다시 말하자면, 열전도는 오직 x 방향으로 만 향하고 절연체의 열전도성 λ은 일정하다고 가정되었다. 최대 온도 Tm은 위치 x=0에서의 경계 조건은 위의 수식과 같다.

정적인 케이스에서는, 열전도에 의해 전달되는 전력 각각의 볼륨 요소는 다음과 같다.

$P_{ab}^'=-div\lambda gradT$Pab=divλgradT
$must\ be\ eaqul\ to\ the\ power\ input\ P_{diel}^'$must be eaqul to the power input Pdiel

수식 유도과정은 생략하고 전압과 최대 온도의 관한 수식은 다음과 같이 표현된다.

$U=2\sqrt{\frac{2\lambda }{p_0\sigma }}\frac{\cosh ^{-1}e^{\frac{1}{2}\sigma \left(T_m-T_0\right)}}{e^{\frac{1}{2}\sigma \left(T_m-T_0\right)}}$U=22λp0σcosh1e12σ(TmT0)e12σ(TmT0)



위의 수식은 다음과 같이 다시 나타내어질 수 있다.

$U_k=2\sqrt{2}\sqrt{\frac{\lambda }{p_0\sigma e^{\sigma \left(\left(T_u-T_0\right)\right)}}}\cdot f\left(\sigma \Delta T_m\right)\ with\ \Delta T_m=T_m-T_u$Uk=22λp0σeσ((TuT0))·f(σΔTm) with ΔTm=TmTu
$$

Function f(бΔTm)은 figure 1.3-11에 나타나있다. 물리적으로 의미 있는 답안은 명백히 증가하는 전압과 높은 값의 최대 온도를 요구하지만 최댓값의 오른쪽 영역에서는 더 이상 이 조건들이 만족 되지 않는다. 가장 높은 수치는 бΔTm ≒1.2에서 가지는 0.663 정도인데 이는 열에 의한 파괴전압 Uk 의 상응한다. 이에 우리는 다음과 같은 수식을 얻을 수 있다.

$$
$U_k=1.875\sqrt{\frac{\lambda }{p_0\sigma e^{\sigma \left(\left(T_u-T_0\right)\right)}}}with\ p_0=\omega \varepsilon _0\varepsilon _r\tan \delta _0$Uk=1.875λp0σeσ((TuT0))with p0=ωϵ0ϵrtanδ0

보통 한쪽의 쿨링판에서 일어나는 케이스에서는, x=0 부터 x=s 까지의 적분을 통해 Uk의 절반값은 얻어낼 수 있다. 놀랍게도 이 Uk의 값은 판의 두께 s에 의존하지 않는다. 하지만, 주어진 주변 온도와, 물질의 재료의 대해서는 의존적이다. 보통의 고전압 절연 물체에 대해서는, 50Hz의 주파수에서 50kV~500kV 범위의 값이 얻어진다. 하지만 주변 온도가 상승하면, Uk의 값은 급격하게 감소한다.

예를 들면, oil-paper 절연체는 50Hz 그리고 20℃에서 다음과 같은 값을 가진다.



한쪽 면의 열전도 그리고 주변 온도 20℃에 대한 Uk값은 444kV이다. 주변 온도가 100℃이라면 199kV의 값을 가지게 된다. Figure 1.3-10에 보이는 바와 같이, 전극에 존재하는 열전도율 관련 모델에서는, 서로 반대 방향을 하고 있는 전극 섹션 사이의 온도 분배는 항상 같다(화살표 방향을 의미). 따라서, 이런 현상을 global thermal breakdown이라고 일컫는다.



대조적으로, K.W. Wanger는 Figure 1.3-12에서 보이듯이 그의 조사의 따르면 그는 증가된 전도성의 얇은 경로는 절연체 안에 존재하고 방사성(radial) 열전도는 이 절연체로부터 발생한다. 이 모델을 부분적 열 절연 파괴(local thermal breakdown) 이라고 하며 다음과 같이 나타내어진다.

$U_k\sim \sqrt{s}$Uk~s

이론의 가정은 실제 경우에서 부분적으로만 들어맞는다. 그래서, 이론을 통한 계산은 근삿값만을 제시할 수밖에 없으며 열의 안정성과 관련된 실험을 완전히 대체할 수는 없다. 열 변화(정적 최대 온도)가 완전히 끝난 다음에, 동작 조건에서 고려된 전압 조건하에 오래 시간 동안 절연체를 실험할 때 이 상황은 종결될 수 있다. 즉 일정한 손실 요인의 안정성의 가능한 결과는 figure 1.3-13에서 보이며 이것은 비-파괴 결정자 Uk를 인가한다. 또한 이러한 실험들은 부싱(bushings), 파워 캐패시터, 케이블과 관련해서 매우 중요하다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


뇌 충격전압에 비해서 개폐 충격전압은 더 큰 펄스 시간을 보여준다.(250/2500μ s). 이 개폐 충격 전압은 곡면이 심한 양극성의 전극(조건: 비균일 전계, 공기 중 간극이 큰 비대칭 전극 구조) 대하여 파괴전압을 유도할 수 있기 때문에, 외부의 절연 시스템의 단위 측정에 있어서 동작 전압(operating voltage)는 400kV 또는 그 이상이 되어야 한다.




Fig 1.2-15는 양(+) 뇌 충격전압이 또는 개폐 충격전압이 적용될 때 rod-plate-gap에 작용하는 응력의 기간 동안 강도의 관해서 다른 특성들을 보여준다.

그래프에서 보이듯이 뇌 충격전압은 가장 큰 간극(s)에 도달할 때까지 5kV/cm의 기울기로 꾸준하게 증가함을 보이는 반면, 개폐 충격전압에서는 간극(s)가 5m 지점에 도달하는 순간 포화 곡선의 특성을 보여준다.

개폐 충견 전압이 crest 지점을 통과하는 시간 (Tcr≥250μs)이상 부터는 상황이 더 복잡해지는데 더 낮은 50% 즉, crest에 관한 더 긴 시간을 향해 최소 강도(더 큰 간극)가 향함에 따라, 절연 파괴 전압이 나타난다.

공기의 습도 또한 절연파괴 전압과 함께하는 방전 메커니즘에 또한 영향을 줄 수 있다. 따라서 최소 강도의 곡선 (Fig 1.2-15에서 낮은 곡선에 해당 curve 3)은 절연 시스템을 구축할 때 가장 높은 전압(the highest voltage)을 고려하여야 한다.

양(+) rod-plate 배열의 비하여 전극 구조에서 전계 강도는 비 대칭 그리고 비균일 전계의 증가와 함께 같이 증가한다. 이러한 현상은 간극 요인 (gap factor) k에 의해 다음과 같이 정의된다.

$k=\frac{U_{d-50}\ _{configuration}\ }{U_{d-50}\ _{rod\ plate}}$k=Ud50 configuration Ud50 rod plate

rod-plate-gap 은 양(+) 개폐 전압에 관해서 가장 낮은 전계 강도를 보여주기 때문에 k의 값은 1이 된다. 실제 전극 구조에서 간극 요인 (gap factor)의 값은 k=1~2. Rod-plate-gap의 50%의 파괴전압의 의존도는 간극에 달려있기 때문에 (Fig 1.2.-15) 대부분 구조의 파괴전압은 다른 값비싼 장비 필요 없이 제공된 간극 요인(gap factor)를 통해 결정할 수 있다.

양(+) 개폐 전압과 함께 응력이 적용된 Rod-plate-gap의 낮은 절연 파괴 강도의 대한 원인은 방전 원리를(discharge) 통해 고려되어야 한다 (e.g. streamer-leader mechanism).



위의 그림에서 보이듯이 이온화 전계 강도를 도달했을 경우, 존재하던 전계에서 양극성의 공간전하가 떠나가는 양(+)의 방향 쪽에서, streamer 방전은 발전되게 된다. 암 간격(dark interval) 이후에는 증가된 전압의 영향 하에서 더 강한 streamer 방전이 나타나게 된다. 그리고 충동 전류에 의해 더 뚜렷해진다.

연속적인 streamer 방전은 특정 부분에 매우 높은 전류 밀도를 유발하는데 이 특정 부분은 열 브러시 방전(thermal brush discharge)가 형성되는 부분이고 이 열 브러시 방전은 마지막에는 지속적인 foward-growing-leader로 변하게 된다.

Leader streamer의 끝 쪽 부분으로부터, 방전은 지속적으로 증가하며 이 방전의 전류 충족 조건들은 열 이온화를 도우면서 the leader의 영역을 만들게 된다. 절연 파괴는 streamer가 전극 면에 도달했을 때 시작된다.

Streamer가 전압 조건을 약 4.5kV/cm을 가지는 반면, leader는 단지 1kV/cm의 필요로 한다. 따라서, leader는 포인트의 전위(potential)을 전계 영역까지 확장을 하고 머리 부분에 해당하는 지점에서 streamer에 의한 추가 발전의 대해 준비하게 된다. 이 방식에서는, 간극(the gap)은 간헐적은 단계 방식으로 연결되게 된다. 경로의 공간 전인 발전에서의 가능성들을 통해서, 더 큰 분산제(scatter)가 파괴전압 안에서 뒤따르게 된다.

이 Ledear 메커니즘은 또한 파괴전압이 유일하게 간극(gap spacing) 공간의 증가의 관련하여 왜 미미하게 증가하는지를 설명해 준다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


실험들이 통해 알려진 것은 절연파괴의 진행은 제한되어 있는 시간이 요구된다. 짧은 시간 동안의 응력(stress)에 있어서 매우 중요하게 여겨지는데 이 부분에 있어서 자세히 다뤄보려 한다.

A) 통계적 시간 차(Statistical time lag)

만약 개시전압(Ue)보다 더 큰 전압이 균일하거나 약하게 비균일 전계와 함께 적용된다면 초기 전자가 전극의 중요 부분의 나타났을 시에만 전자사태(electron avalanche)가 시작된다.

일반적으로, 전계 방출은 전극에서 약 MV/cm 단위의 전계강도를 요구하기 때문에 이 전자들은 반드시 자연적으로 발생되거나 또는 인공적인 외부의 이온화 과정에 의해서 생성되어야 한다.

시차(파괴 전계에 도달하는 시간과 요구된 초기 전자가 등장하는 시간의 차)가 실험들마다 다르기 때문에 이것을 통계적 시간차(statistical time lag: tsv)라고 일컫는다.




Figure 1.2-11은 전극의 배열을 보여주며 모두 동일한 n0 으로 구성되어 있고 무두 상호 독립적 간극(mutually independent gaps)들로 구성되어 있다.

단계 전압(step voltage) U>Ue 이 t=0일때를 생각해 보자.

만약 n이 초기 전자들이 아직 나타나지 않은 간극(gaps)의 개수라면, 시간 간격(dt)의 따른 개수의 변화(dn)는 비례 요인(proportionality factor) 와 함께 다음과 같이 표현된다.

$dn=-kn\ dt$dn=kn dt
$\Downarrow $
$n=n_0e^{-kt}$n=n0ekt

만약 실험이 단일 간극(n0)의 시간에 대해서 수행된다면, n 은 tsv>t 보다 크게 측정된 실험의 횟수를 의미하게 된다. 연산적인 의미에서 모든 n0의 값과 tsv (v=1...n0) 는 다음과 같이 표현될 수 있다.

$t_s=\frac{1}{k}$ts=1k

전기적으로 강하게 응력 된 부피와 전계가 증가할 때 평균 통계적 시차(the mean statistical time lag)는 감소한다. 이것은 단지 μs 시간 정도의 마찰이지만 좋지 않은 경우 몇몇 더 높은 강도가 될 수 있다. 강한 비균일 전계(strongly inhomogeneous field)에서는, 적절한 수의 대전 캐리어가 선-방전(the pre-discharge)에 의해 이용 가능하다. 따라서, 통계적 시차(statistical time lag)는 완전한 절연파괴에 있어서 아무런 영향을 끼치지 않는다.

B) 형성적 시간 차 (Formative time lag)

절연파괴 메커니즘에서 정말 문제 되는 것은 대전된 캐리어의 움직임이며 대전된 캐리어는 전계(electric field)에서 그 움직임이 가속된다. 대전된 캐리어들은 제한된 강도를 가지고 있는 속도로 움직이는데 이것은 충동 전압의 응력 시간 동안 반드시 고려되어야 한다.

1차 전자사태의 시작부터 높은 전도 절연파괴 경로의 형성까지의 시간차는 "방전의 형성적 시간 차 ta"로 지정된다. 그리고 일반적으로 이 경우는 전압 붕괴 현상으로 이끈다. 각각의 적절한 메커니즘에 해당하는 프로세스들은 시간 ta 동안 일어난다.



Voltage dependence of the formative time

형성적 시간차 ta 의 적용된 단계 전압(applied step voltage) 의존도는 위의 그래프에서 보인다.

만약 오직 정적인 파괴전압 (Ud∞)만이 적용된다면, 매우 큰 값의 ta 를 가지게 된다 반면에, 매우 강한 과전압(strongly overshooting voltage)가 적용된다면, 매우 작은 값의 ta 을 얻게 된다. 비균일 전계에 관련해서 절연파괴에서의 경로의 불확실성 때문에 형성적 시간 차 (ta) 는 일정 scatter(분산)의 대상이 된다. 이것은 tav를 사용을 통해 반드시 고려되어야 할 상황이다. 가이드라인에 따르면, 형성적 시간차 ta는 대기에서( 균일 전계 그리고 약한 비균일 전계에서 5%의 과전압) 약 1μs이하로 잘 나타내어지고 이보다 높은 값은 매우 강한 비균일 전계의 값이다.

C) 충동 전압-시간 곡선(Impulse Voltage-Time Curves)

전기적으로 응력이 가해진 전극의 구조에서, 완전한 절연 파괴는 통계적 시간 차 tsv 와 형성적 시간 차 tav 의 합쳐진 시간 차 이후에 발생한다.

총 점화 시간차 tvV=tsv+tav 로 표현된다.

제한된 선두가 가파른 충동 전압에 대하여, 점화 시간 차 ( tvV)는 실제로 정적인 파괴전압 (Ud∞)을 초과하는 짧은 순간으로부터 계산된다. 완전한 절연 파괴가 일어나기 위해서, 응력이 작용하는 시간은 반드시 그의 상응하는 점화 시간 보다 길어야 한다. 만약 전극의 배열이 아주 큰 동일은 충동 전압 (충분한 강도)과 함께 응력을 받는다면, 파괴 전압(Ud) 와 절연 파괴 시간 (td)가 함께 얻어 질 수 있다.



만약 앞쪽의 위치한 경사면에서 충동 전압과 함께 측정이 반복된다면, 충동 전압과 시간 band의 관계의 위의 그림에서 나타나는 바와 같다. 그리고 이것은 파괴전압 시간 (td)의 최솟값과 최댓값이 주어진 충동 전압의 따라서 예측될 수 있다. 제한 커브 1보다 작은 충동 전압-시간 band는 절연 파괴 0%를 의미하고 제한 커브 2보다 높은 값은 100%의 절연파괴를 의미한다. 절연 시스템과 관련해서 이 낮은 제한 커브(curve 1)는 상당히 중요하게 여겨진다.

그리고 이 커브 tsv≒0 에 가깝기 때문에 형성적 시간 특성이라고 불린다. 이 충동 전압-시간 커브는 가스 절연 시스템(뇌 충동 전압의 응력을 받고 있는)을 측정할 때 매우 중요한 기초가 된다.



충동 전압-시간 커브의 계산식은 다음과 같다.

$F=\int _{t_0}^{t_d}\left[u\left(t\right)-U_b\right]dt=const.$F=tdt0[u(t)Ub]dt=const.
$F:\ the\ voltage-time\ area$F: the voltagetime area
$U_b:\ a\ reference\ voltage$Ub: a reference voltage
$formative\ time\ characteristic\ 1$formative time characteristic 1

오직 약한 비균일 전계로 구성된다면, 기준전압(Ub: reference voltage)은 개시 전압 Ue (inception voltage)와 같아지게 된다. 만약 기준전압 값이 구해지면 등면적법 (equal area criterion)은 근삿값으로 구해질 수 있다. 여러 종류의 전압이 등반된 공기 중 다른 간극들은(gaps) 몇몇의 예외를 제외하고는 등면적법이 전압-시간 행동에 있어서 만족할 만한 예상을 가져다주는 것이 확인되었다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


와이어 같은 전극 끝 쪽 작은 곡면에서는 눈에 띌 정도로 전계(the electric field strength)의 강도가 증가한다. 따라서, 전열 파괴 전계(Ed: the breakdown field strength)는 부분적으로 발생한다. 개시 전압(inception voltage: Ue)이 초과되었을 때, 충돌 이온화 과정으로 생성된 전자와 양이온들은 쿨롱의 힘(the Coulomb forces)의 영향을 받아 생성된 지점으로 다른 지점으로 이동하게 된다 (음전성의 기체에서도, 전자들은 전자 부속(attachment) 과정을 통해 음이온을 생성할 수 있다).

한 극(polarity)에서 대전된 캐리어의 축적은 space charge field(공간전하 전계)를 형성하며 이것은 전계(the electric field) 구조 변화에 있어서 아주 큰 영향을 끼친다.

A) 불완전 절연 파괴 (Incomplete breakdown)

접지된 면에 대한 양극성 포인트의 전형적인 배열 안에서의 메커니즘은 다음과 같이 나타난다.



포인트 앞쪽에서 충돌이온화에 의해 생성된 전자들은 anode 쪽으로 끌려간다. 전계를 감소시키는 양극성의 공간전하(space charge)는 포인트 쪽에 남아있게 된다. Direct voltage에 관한 경우, 완전한 breakdown 결과 없이 상태를 유지하게 된다. 전압이 증가했을 때는, 추가적인 짧은 시간 동안 "브러시 방전(brush discharge)"현상이 약하게 빛나는 공간전하 영역으로부터 나오게 된다. 이 브러시 방전의 주파수와 영역은 파괴전압값(Ud)에서 벌어지는 완전한 절연 파괴가 나타날 때까지 전압과 함께 증가한다.



위의 그림에서 보이는 바와 같이, 접지된 면을 향하는 음극성 포인트와 관련된 특성은 다소 다른 형태를 보여준다. 다시 말하자면, 포인트 앞부분의 양극성의 공간전하(space charge)는 개시 전압(Ue:Inception voltage)를 초과했을 때 발생하지만, 전자들은 접지면의 방향으로 배회하게 된다. 만약 가스사 전자 부속(attachment of electrons)에 의해 음이온의 생성이 불가능하다면, direct voltage와 관련해서 즉각적으로 절연파괴 현상이 일어나게 될 것이다. 그 이유는, 양극성의 공간전하로 인해 포인트 앞쪽에서 추가적으로 전계 강도가 증가하는 현상이 발생한다. 즉, 정적인 불완전 안 방전은 불가능하다. 그러나, 대부분 기술적으로 사용되는 가스들 및 특히 공기에서, 음극성 이온 이루어진 공간 전하가 형성되어 포인트 앞쪽부터 충돌 이온 화가 멈추는 지점까지 전계(the electric field)를 감소시킬 수 있다. 음극성의 공간전하가 배회를 한 후에 한 번 더 방전이 시작된다. 이것의 결괏값은 펄스(pulse) 타입의 메커니즘이다. 그리고 이 결과는 외부 회로 안에서 10ns 범위의 시간 동안의 보통의 전류 펄스로 이끈다. 이 현상은 G.W. Trichel에 의해 1938년에 증명되었으며 Trichel Pulse라고 부른다.

추가적인 전압의 증가는 매우 강한 전류 브러시 방전(current brush discharge) 현상을 일으키고 심지어 negative direct 전압에도 해당하며 결국에는 완전한 절연파괴 단계(a complete breakdown voltage)로 넘어가게 된다. 펄스의 라이즈 타임(the rise time)은 약 ns 범위에 해당한다. *라이즈 타임: 펄스 진폭이 10% 차에서 90% 치에 이르기까지의 경과시간. 비록 불완전한 절연파괴의 대한 이해가 복잡하더라도, 시간의 따른 전압의 변화 역시 이전에 언급한 메커니즘이 발생한다. 전압의 변화와 관해서 주기적은 극성(periodic polarity)의 결과도 변하게 되며 충동 전압(the impulse voltage)의 관해서 제한된 시간의 방전 현상은 반드시 설명돼야 한다.

특히 전압 변화와 관련된 불완전 절연파괴에서의 방전은 기술적인 측면에서 매우 중요하다, 즉 끝부분이나 어떤 부분에서의 부분 방전 그리고 오버헤드 송전 라인에서의 코로나 방전 같은 경우를 일컫는다. 앞서 언급한 두 개의 경우 모두 대전대 펄스들은 높은 주파수의 전자기적 방해를 발생시키기 때문에 반드시 고려되어야 한다. 특히, 오버헤드라인 디자인에 있어서 중간 길이의 파장 범위에서 라디오 전파방해를 피하기 위해서 신경 써야 될 부분이다.

정적인 또는 펄스 타입의 방전(지속적인 또는 펄스 코로나)은 real power(P=V*I*cos φ)를 필요로 한다. 오버헤드라인에 있어서 이런 코로나 손실은 대기 상태에 매우 의존적이다. 강도는 보통 1~10KW/km 정도이다. 그리고 오버헤드라인과 관련해서 충분히 높은 코로나 개시 전압(onset voltage)를 달성하기 위해서는, 전도체(the conductor)의 직경(diameter)이 충분히 커야 한다. 동작전압이 100kV 이상일 경우는, 단일 전도체를 사용하기보다는 여러 개의 전도체가 묶여있는 한 묶음(bundle)을 사용한다.

Three phase(삼상)의 송전 라인은 정격전압에 있는 전도체의 표면에 rms 값의 전계강도(15KV/m) 로 디자인되었다.

B) Air 절연파괴 동안의 극성효과(Polarity effect during air break)

양전하의 캐리어는 전자(음전 하의 주요 캐리어)보다 질량이 훨씬 크다. 더 강한 전계에서의 전극이 그것의 극성을 변화시킬 때, 비대칭의 전극의 구조에 단극의 전압(unipolar voltage)가 가해진 경우, 다른 특성이 나타나야 한다.



Polarity Effect in the inhomogeneous field

만약 공기 중에서 천체 구조의 판의 간극(spacing)이 넓은 범위 안에서 변하게 되면, direct 전압의 대한 Ud(파괴전압)의 변화는 위의 그림과 같이 나타난다.

s/r<1에 해당하는 약한 비균일 전계에서는 (천체 구조의 판의 간극을 측정) 수식을 다음과 같이 나타낼 수 있다.

$U_e=U_d;\ U_{d+}\approx U_{d-}$Ue=Ud; Ud+Ud

반면에 s>>1에 해당하는 강한 비균일 전계에서는 (판의 막대 부분(rod-plate)) 수식을 다음과 같이 나타낼 수 있다.

$U_e<U_d\ ;\ U_{d+}<U_{d-}$Ue<Ud ; Ud+<Ud

파괴전압에서의 큰 편차는 약한 비균일 전계와 강한 비균일 전계의 경계 영역에서 측정된다. 큰 간극에서의 개시 전압(Ue)는 거의 일정하고 극성에 대해 독립적이다. 그리고 공간전하 무 전계(space charge free field)의 특성에 의해 설명될 수 있다. 그리고 만약 Emax=Ed 이면, 개시 전압(Ue)의 값을 얻을 수 있다.

간극이 큰 경우에는(at large gap spacings), 양극성의 파괴전압(the positive breakdown voltage)은 음극성의 파괴전압(the negative breakdown voltage)보다 훨 씩 작은 편이다. 교류전압에 있어서, polarity effect(극성 효과)는 비대칭 구조의 positive half-cycle에서 항상 절연 파괴를 일으킨다.

공기 중 더 큰 파괴전압은 (전극의 음극 성과 더 작은 직경의 곡면에서) 음극성 이온의 공간전하 전계 균일화 효과에 기인한다.

공기 중 Rod(길쭉한 막대 부분)의 파괴전압(Ud)은 고 전압(high voltage)에 관련해서 장비나 설치 기구 안의 공기 제거 디자인에 있어서 매우 중요하다. 위의 그림에서 뚜렷하게 보이듯이, 만약 파괴전압(Ud)이 개시 전압(Ue)보다 훨 씩 크다면, 곡면의 반지름(r) 은 파괴전압에 있어서 공간전하의 효과로 인해 특별한 영향을 끼치지 못한다.

실제로, 모든 비균일 구조의 간극(gap spacings)이 약 0.5m보다 크다면 rod의 간극 같은 행동들을 보여준다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


+ Recent posts