실험들이 통해 알려진 것은 절연파괴의 진행은 제한되어 있는 시간이 요구된다. 짧은 시간 동안의 응력(stress)에 있어서 매우 중요하게 여겨지는데 이 부분에 있어서 자세히 다뤄보려 한다.
A) 통계적 시간 차(Statistical time lag)
만약 개시전압(Ue)보다 더 큰 전압이 균일하거나 약하게 비균일 전계와 함께 적용된다면 초기 전자가 전극의 중요 부분의 나타났을 시에만 전자사태(electron avalanche)가 시작된다.
일반적으로, 전계 방출은 전극에서 약 MV/cm 단위의 전계강도를 요구하기 때문에 이 전자들은 반드시 자연적으로 발생되거나 또는 인공적인 외부의 이온화 과정에 의해서 생성되어야 한다.
시차(파괴 전계에 도달하는 시간과 요구된 초기 전자가 등장하는 시간의 차)가 실험들마다 다르기 때문에 이것을 통계적 시간차(statistical time lag: tsv)라고 일컫는다.
Figure 1.2-11은 전극의 배열을 보여주며 모두 동일한 n0 으로 구성되어 있고 무두 상호 독립적 간극(mutually independent gaps)들로 구성되어 있다.
단계 전압(step voltage) U>Ue 이 t=0일때를 생각해 보자.
만약 n이 초기 전자들이 아직 나타나지 않은 간극(gaps)의 개수라면, 시간 간격(dt)의 따른 개수의 변화(dn)는 비례 요인(proportionality factor) 와 함께 다음과 같이 표현된다.
만약 실험이 단일 간극(n0)의 시간에 대해서 수행된다면, n 은 tsv>t 보다 크게 측정된 실험의 횟수를 의미하게 된다. 연산적인 의미에서 모든 n0의 값과 tsv (v=1...n0) 는 다음과 같이 표현될 수 있다.
전기적으로 강하게 응력 된 부피와 전계가 증가할 때 평균 통계적 시차(the mean statistical time lag)는 감소한다. 이것은 단지 μs 시간 정도의 마찰이지만 좋지 않은 경우 몇몇 더 높은 강도가 될 수 있다. 강한 비균일 전계(strongly inhomogeneous field)에서는, 적절한 수의 대전 캐리어가 선-방전(the pre-discharge)에 의해 이용 가능하다. 따라서, 통계적 시차(statistical time lag)는 완전한 절연파괴에 있어서 아무런 영향을 끼치지 않는다.
B) 형성적 시간 차 (Formative time lag)
절연파괴 메커니즘에서 정말 문제 되는 것은 대전된 캐리어의 움직임이며 대전된 캐리어는 전계(electric field)에서 그 움직임이 가속된다. 대전된 캐리어들은 제한된 강도를 가지고 있는 속도로 움직이는데 이것은 충동 전압의 응력 시간 동안 반드시 고려되어야 한다.
1차 전자사태의 시작부터 높은 전도 절연파괴 경로의 형성까지의 시간차는 "방전의 형성적 시간 차 ta"로 지정된다. 그리고 일반적으로 이 경우는 전압 붕괴 현상으로 이끈다. 각각의 적절한 메커니즘에 해당하는 프로세스들은 시간 ta 동안 일어난다.
Voltage dependence of the formative time
형성적 시간차 ta 의 적용된 단계 전압(applied step voltage) 의존도는 위의 그래프에서 보인다.
만약 오직 정적인 파괴전압 (Ud∞)만이 적용된다면, 매우 큰 값의 ta 를 가지게 된다 반면에, 매우 강한 과전압(strongly overshooting voltage)가 적용된다면, 매우 작은 값의 ta 을 얻게 된다. 비균일 전계에 관련해서 절연파괴에서의 경로의 불확실성 때문에 형성적 시간 차 (ta) 는 일정 scatter(분산)의 대상이 된다. 이것은 tav를 사용을 통해 반드시 고려되어야 할 상황이다. 가이드라인에 따르면, 형성적 시간차 ta는 대기에서( 균일 전계 그리고 약한 비균일 전계에서 5%의 과전압) 약 1μs이하로 잘 나타내어지고 이보다 높은 값은 매우 강한 비균일 전계의 값이다.
C) 충동 전압-시간 곡선(Impulse Voltage-Time Curves)
전기적으로 응력이 가해진 전극의 구조에서, 완전한 절연 파괴는 통계적 시간 차 tsv 와 형성적 시간 차 tav 의 합쳐진 시간 차 이후에 발생한다.
총 점화 시간차 tvV=tsv+tav 로 표현된다.
제한된 선두가 가파른 충동 전압에 대하여, 점화 시간 차 ( tvV)는 실제로 정적인 파괴전압 (Ud∞)을 초과하는 짧은 순간으로부터 계산된다. 완전한 절연 파괴가 일어나기 위해서, 응력이 작용하는 시간은 반드시 그의 상응하는 점화 시간 보다 길어야 한다. 만약 전극의 배열이 아주 큰 동일은 충동 전압 (충분한 강도)과 함께 응력을 받는다면, 파괴 전압(Ud) 와 절연 파괴 시간 (td)가 함께 얻어 질 수 있다.
만약 앞쪽의 위치한 경사면에서 충동 전압과 함께 측정이 반복된다면, 충동 전압과 시간 band의 관계의 위의 그림에서 나타나는 바와 같다. 그리고 이것은 파괴전압 시간 (td)의 최솟값과 최댓값이 주어진 충동 전압의 따라서 예측될 수 있다. 제한 커브 1보다 작은 충동 전압-시간 band는 절연 파괴 0%를 의미하고 제한 커브 2보다 높은 값은 100%의 절연파괴를 의미한다. 절연 시스템과 관련해서 이 낮은 제한 커브(curve 1)는 상당히 중요하게 여겨진다.
그리고 이 커브 tsv≒0 에 가깝기 때문에 형성적 시간 특성이라고 불린다. 이 충동 전압-시간 커브는 가스 절연 시스템(뇌 충동 전압의 응력을 받고 있는)을 측정할 때 매우 중요한 기초가 된다.
충동 전압-시간 커브의 계산식은 다음과 같다.
오직 약한 비균일 전계로 구성된다면, 기준전압(Ub: reference voltage)은 개시 전압 Ue (inception voltage)와 같아지게 된다. 만약 기준전압 값이 구해지면 등면적법 (equal area criterion)은 근삿값으로 구해질 수 있다. 여러 종류의 전압이 등반된 공기 중 다른 간극들은(gaps) 몇몇의 예외를 제외하고는 등면적법이 전압-시간 행동에 있어서 만족할 만한 예상을 가져다주는 것이 확인되었다.
출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.