고 전압 기술에서의 구조적 특징(Structural details in high-voltage technology)


고 전압 장비를 디자인하고 건설하는 일에 있어서 전계(electric field)의 원리를 정확히 이해하는것이 매우 중요하다. 고전압 기술은 기계적 또는 열적인 측면에서 최상의 조건을 보유하더라도 예상치 못한 여러 문제들로 인해 종종 건설이 지연되기도 한다. 따라서 공학자들은 반드시 이러한 요구 조건을 모두 고려하여 최대한 경제적이고 합리적인 디자인과 건설을 이끌어내야만 한다.


절연 시스템의 기본적인 배열(Basic arrangement of the insulation system)


절연 시스템의 필수적인 요소들이라고 할 수 있는것은 절연체의 종류와 그것의 알맞은 개수이다. 두 전극 사이 연결고리의 전위차는 시스템의 정확한 통제를 위해 반드시 전기적으로 절연되어져야 한다. 고체 절연체들과 액체 또는 가스 절연체 사이에 위치한 경계 표면은 절연 시스템에서 특히 중요한 부분으로 여겨진다.


a) 단일 절연 재료 구조(single material configuration)


외부 지역이나 플라스틱 케이블의 단일 절연 구조의 예는 바로 공기 (air)이다. 대칭적 그리고 비대칭적인 전극의 구조는 대게 매우 다른 행동들을 보여준다. Figure 3.1.-1은 대칭과 비대칭 전극의 전계 강도 E (field strength)를 보여진다. 그림에서 보여지듯이 같은 간극(spacing: s)에서는 대칭적인 구조가 비대칭 구조보다 더 나은 전계의 분배모습을 모여준다 (두 경우 모두 일정한 전압 U 가 적용되있다고 가정). 또한 대칭 구조에서 더 낮은 Emax의 값을 가지는 것을 보여준다. 



위의 구조를 이해하여야 하는 중요한 이유는, 전계 분배의 강도를 통제함으로써 수직적 간극이나 지지적인 절연체의 간극을 조절함으로써 절연 파괴 전압을 증가시킬 수 있다. 그리고 위쪽의 위치한 전극을 이동함으로써 간극 s의 간격을 조절 할 수 있다. Figure 3.1-2는 비균일 전계를 동반한 충격 전압하에서의 절연파괴 전압을 보여주여 이러한 절연 파괴 전압은 h 길이의 증가와 함께 같이 증가하는 경향을 보인다.



b) 여러 절연 물질의 구조(Multi-material configurations)


대부분의 절연 시스템에서는, 여러개의 절연 재료가 공존하며 절연 경계 표면은 절연체 사이에 존재하게 된다. 이러한 경계면에서 발생하는 힘의 방향은 Figure. 3.1-3에서 보여지는 바와 같으며 전계의 탄젠트(tangential) 성분의 전계 강도(electric field strength)는 일정하다.



일정한 절연체 이동 조건으로 인한 수식은 다음과 같다.



경계 표면은 최소한으로만 전기적 응력(stress)가 작용하게 되는데 그 이유는 불순물들과 습도의 존재때문이며 이러한 존재는 레이어(layer)를 오염시킬 가능성이 있다. 따라서, 절연 시스템의 건설적인 조건에서 경계 표면에서 낮은 전계 강도의 유지는 매우 중요하며 특히 tangential 성분의 전계 더 주의깊게 고려하여야 한다. 


만약 표면 경계가 등위적 표면(equipotential surface (Et = 0))에서 동시에 존재하게 되면 특이한 케이스가 유발되는데 이러한 케이스를 횡 경계 표면(transverse boundary surface)이라고 부른다. Figure 3.1.-4 는 트랜스포머에서의 절연 경계(barrier)를 보여준다. 제조 과정에서 이러한 경계(barriers)들은 몰딩처리 되는데 그 이유는 가능한한 등위적 표면의 형태를 유지하기 위함이다. 


종 경계 표면(longitudinal boundary surface)에 관해서는, tangential 요소인 전계 강도 Et는 제한적인 값을가지는 반면, 보통 요소인 En=0의 값을 가진다. 경계 표면은 전계 라인을 따르지만 전계 분배는 고형 절연체에의해 영향을 받지는 않는다.



Figure 3.1.-5 지지 절연체의 구조의 예.


a) 끝쪽의 전계는 돌출 전극의 방식으로 균일화 되었다.

b) 절연체의 형태가 전계로 적용된 모습.


기술적 디자인 측면에서, 전계 강도(field strength)의 보통 요소들뿐만 아니라, tangential 요소들을 제한적 값으로 부터 항상 보호 할 수 있는것은 아니다. 이것을 기울어진 경계 표면(inclined boundary surface) 이라고 한다. 예를 들어, Figure 3.1-6a 처럼 전극과 함께 하는 절연체가 고형의 절연체 안으로 내장된 것을 고려해보자



이 상당히 괜찮은 조건의 구조는 절연체 몸체 중심부의 지름(diameter, *dotte line으로 표시됨)를 확장시킴으로써 더 괜찮은 모델로 향상될 수 있다. 그 이유는, 지름을 늘림으로써, tangential 전계 강도는 줄어들 수 있기 때문이다. Figure 3.1-6b에서 처럼, 표면에 전극이 배열된 구조는 상당히 불안정한데 그 이유는 상대적으로 매우 높은 tangential 전계 강도(field strength) 때문이다. 그리고, 이 경우에는, 부분 방전(partial discharge)는 간신히 예방될 수 있는 정도이다.


c) 절연 구조(Insulating configurations)


전체적인 시스템을 통틀어 견고한 연결이 완료되지 않은 곳의 예로써는 solid insulated coaxial cable 또는 epoxy resin instrument 트랜스포머 등이 있다. Figure 3.1-7에서 보이는것 처럼, 4가지의 다른 절연 구조가 구분되어 진다.


a) 압축적이고 휘는 힘의 송전을 위한 지지 절연체.

b) 송전시 장력을 위한 서스펜션 절연체.

c) 전극의 견고한 관통을 위한 부싱 절연

d) ground된 지역으로 부터의 voltage-carrying electrode의 견고한 lead-out.


야외 구조에서는, 절연체에는 방수 물질이 적용되는데 그 이유는 creepage 경로(연면거리) 를 증가시키기 위함이며 그 다음은 우천시 수로(water channel)의 형성을 예방하기 위함이다. 방수 물질의 형태는 절연체 제조의 사용된 재료 및 예상되는 공기 오염도에 의존하게 된다. 


Creepage 경로 값의 가이드 라인의 따르면 정격전압에따라 2~4kV/mm 정도가 예상된다. 방수 물질의 전형적인 프로필은 porcelain(애자 또는 자기: 도자기 느낌)와 플라스틱 절연체이다(figure 3.1-8). 




플라스틱 절연체에 관해서는, 슬림한 형태 방수 물질이 사용되는데 특시 소수성(hydrophobic)의 물질이 적용된다. 이러한 적용은 creepage 경로를 오염 방어능력의 손실없이 줄일 수 있다. 가스 절연의 설치에 관해서는, 지지 절연체(support insulator)는 그라운드된 메탈 하우징내에서 lead의 간격의 유지가 요구된다.



정격 전압 110kV 이상에서는 타입(c)의 절연체가 선호된다. 3 phase나 복잡한 형태의 절연시스템에서는 타입(d)의 형태를 고려하여야 한다. 특히 고 전압 가스 절연 시스템을 위해서는 지지 절연체의 모양은 반드시 경계 표면에서의 전계 곡면을 고려하여 선택 되어야 한다.


출처:

D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


자연 유기 절연 물질(Natural organic insulating materials)-오일을 함유한 종이(Oil-impregnated paper)


a) 성분 및 제조(Properties, manufacture) 


오일을 함유한 종이는 고 전압 절연 시스템에 있어서 가장 중요한 절연 복합체이다. 여러개의 레이어로 구성된 종이가 절연체로 사용 될 수 있기때문에 종이의 섬유소적인 측면을 고려하면 소프트 페이퍼와 오일의 직렬 연결이 주는 절연적 특성을 고려해 볼 수 있다. 만약, 플레이트 타입의 절연 두께 s 유전율(permittivity) ε를 고려해본다면, 순수 오일(s1, ε1)과 순수 종이(s2, ε2)의 직렬 연결을 생각해 볼 수 있다. 이 두 물체가 직렬로 연결되었을 경우,


s1 과 s2는 미지수 이며 기준 공기 볼륨 v에 의해 소거될 수 있다.


(위의 과정은 수식의 유도과정, 티스토리 수식 입력기의 기능이 제한적이라서 캡쳐하였습니다)


따라서 ε1=2.2 ε2=5.6에 관해서, 오일/종이 라미네이션의 전기적 응력 비율은 E1/E2=ε1/ε2 ~ 2.55 값을 가진다.


따라서, 오일은 종이보다 전기적으로 더 응력이 가해진다. 정교한 라미네이션의 사용을 통해, 많은 수의 얆은 필름을 얻을 수 있으며 높은 전기적 강도를 가지고 있다. 따라서, 오일-종이 절연체가 가지는 우수한 절연 파괴 강도에 큰 기여를 한다고 볼 수 있다. 종이는 오일 레이어의 형태로 업그레드 될 수 있으며 불순물들의 브릿지 현상을 억제하는 역할을 하고 절연시스템의 기계적인 안정성을 보장한다. 


두꺼운 오일-페이퍼의 절연체더라도 절연 파괴 강도는 최대 400kV/mm까지 가지며 DC 전압 캐패시터에서 동작 전계 강도는 최대 100 kV/mm, AC 응력에서는 최대 20kV/mm 까지 적용된다. 높은 질의 오일-종이 절연 방출 요인은 (the dissipation factor) tanδ~3*10^-3의 값을 가지며 볼륨 저항성 ρ~10^15 Ωcm, 그리고 허용 제한 온도는 100℃ 이다.


장비의 오일-페이퍼 절연 시스템은 반드시 주의 깊게 제작되어야 한다. 그 이유는 유해한 가스의 방출을 예방하기 위함이며 이러한 가스는 부분방전 또는 오일의 절연 파괴 전계 강도를 줄일 수 있기때문이다. 추가적으로, 수분은 완전히 제거되어야 한다. 왜냐하면 수분은 오일의 전기적 강도에서 눈에 띄는 왜곡 현상 뿐만 아니라, 종이의 노쇠화(변질)을 야기 시키기 때문이다.


제작과정은 10^-3~10^-4 mbar의 진공 챔버에서 진행되며 온도는 최대 110℃이다. 제품의 건조 시간은 절연체 두께의 따라서 증가하며 수 일에서 수 주의 시간을 소요한다. 


건조 과정은 영구적인 방출요인 모니터링 시스템에 의해 관리 된다. 건조 기간 동안, 잔여 수분과 가스제거과정 사이의 압력은 흡수 등온선에의해 설명된다(Figure 2.5-4).


건조된 페이퍼 절연체는 가능하다면 진공상태에서 오일을 머금는 과정을 거치게 되고 이 과정에 사용되는 오일은 최근 정제된 오일이나 따듯한 미네랄 오일이 적용된다. 종이의 축축해지기 쉬운 특성은 건조한 종이가 오일에있는 수분을 흡수하려는 현상을 유발한다. 결과적으로, 오일은 종이에 잔여 가스들을 용해시키고 부분방전 퍼포먼스 향상에 기여하게 된다.




b) 케이블 절연에서의 오일을 함유한 종이(Oil-impregnated paper as cable insulation)


오일-페이퍼 절연체는 케이블 절연에 있어서 또한 지배적인 역할을 한다. 최대 60kV 전압의 범위에서는 소위 compound-filled cable이 사용되지만 PE cable에 의해 대체되었다. 110kV 또는 이 보다 높은 전압에서는 오일로 채워진 케이블이 지배적이다.


처음에, 전도체는 페이퍼 테이프 절연에 의해 20~30mm 넓이 그리고 0.1~0.15mm의 두께로 오버랩 없이 감겨 있다. 종이 절연체는 건조되게 되고 오일을 함유하게 된다. 미네랄 오일의 낮은 점도성은 오일로 채워진 케이블에 사용되고 미네랄 오일은 레신(resin) 첨가제와 함께 compound-filled cable에 관해서 함께 두꺼워 진다.


Compound-filled cable에서는 오일이 함유되는 온도에서 허용된 재료는 낮은 점도성을 가지고 있으며 주변온도 그리고 동작온도에서는 높은 점도성을 가지고 있다. 이렇게 다른 특성을 가짐으로써, 케이블의 이동 및 설치시 케이블의 물리적 파괴를 예방할 수 있다.


간단한 셋업으로 여겨지는 Compound-filled cable의 사용은 medium 전압에 있어서 부분방전에 위험으로 인해 매우 제한적이다. 열적 응력(stress)의 작용동안은, compound(복합체)는 전도체의 표면 피복으로 확장되게 되고 이러한 확장뒤에는 이전 상태로 돌이킬 수 없는 확장을 하게된다. 냉각 후에는, 가스로 채워진 공간들이 생성되고 이러한 부분들은 부분방전의 시작점이 된다. 그리고 이러한 현상은 허용 동작 전계 강도를 4kV/mm로 제한한다. Compound-filled cable은 또한 내부 와 와부 가스 압력이 작용한 케이블에서 동작 전압에 있어서 60kV이상에서는 그 사용이 제한되게 된다.


이전에 언급한 compound-filled cable 절연에서의 공간의 형성은 그 어떤 위험으로 부터 예방된다. 이러한 예방은 가스 압력을 15 bar nitrogen을 유지하면서 예방하게 되고 이로 인해 공간(cavities)에서의 개시 전압(inception voltage)를 증가 시킬 수 있다. 9kV/mm 의 동작 전계 강도는 SF6를 추가함으로써 최대 12~13kV/mm까지 얻어질 수 있다. 외부의 가스 압력 케이블에서는, 보통의 compound-filled cable은 강철 파이프 안쪽에 설치되며 nitrogen(15 bar 압력)으로 채워진다. 전도체 표면 피복은 압력막처럼 행동하게 되며 공간(cavities)의 생성을 방지하고 공간에서 높은 압력을 유지한다.


낮은 점도성의 미네랄 오일은 oil-filled 케이블에 사용되고 빈 공간(cavities)의 생성을 방지한다. 확장 베슬(vassels)은 보통 수 km의 간격으로 배치되는데 이러한 배치를 통해 케이블을 일정 압력으로 유지할 수 있다. 낮은 점도성의 오일을 따듯하게 함으로써 확장 베슬로 흘러들어 가게 하는데  전도체 표면으로의 확장 없이 가능하다. 냉각시에는, 확장 베슬로 부터 케이블 절연체로 다시 흘러들어 가게 된다.


압력의 값은 절연 파괴 전계 강도에 영향을 미치며 다음 그림에서 보여지는바와 같다.




만약 오일의 압력이 낮은 bar의 값을 가진다면, 낮은 압력의 oil-filled cables을 가지며, 15 bar 의 오일 압력을 가진다면 높은 압력의 oil-filled cable을 가진다. 동작 전계 강도는 최대 14kV/mm이며 유럽국가들 사이에서는, 낮은 압력의 oil-filled cable 사용이 지배적이다.


충동 전압의 강도를 고려하였을때, 더 얇은 종이가 종종 최대 응력 범위내에서 배열된다. 즉, 전도체 내부에 배치되고 반면에, 외부영역은 보통의 케이블 페이퍼가 사용된다. ac 강도의 증가를 제외하고, 균일 전계 분배에서의 라미네이션의 결과는 더 얇은 종이 레이어의 높은 절연 상수로 인해 전압 분배가 외부쪽, 즉 전계가 약한쪽으로 이동하게 된다. 이러한 측정방법들은 400kV의 oil-filled cable을 1640kV의 충동전압을 견딜 수 있게 디자인 할 수 있으며 이 경우 절연 벽의 두께는 28mm 밖에 되지 않는다. 또한 최대 전계 강도는 이 경우에 93kV/mm 이다.


Oil-filled cable의 방출 요인(dissipation factor)은 약 2~4*10^-3정도이다. 이것은 송전 전압의 증가와 관련한 절연 손실이 케이블에서의 전력 전달에 있어서 제한적이라는 것이다. 



방출요인 tanδ=2*10^-3 에서는 전력의 전달과 관련해서 송전 전압 700kV에서 전도체의 지름은 최대값에 도달하며 더 높은 송전 전압은 오직 절연체의 방출요인이 2*10^-3보다 낮을때만 가능하다. 이런 종류의 절연 시스템은 오일을 머금은 플라스틱 호일, 합성 페이퍼, 또는 페이퍼/플라스틱 조합으로 구성된다.


출처:

D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.



전력을 전달할때 전도체에는 저항의 손실(ohmic losses)로 인해 열이 발생한다. 그리고 이러한 열의 발생은 절연체의 절연 능력 손실과 금속에서의 에디-전류 손실(eddy-current losses)을 거치게 된다. 메탈과 비교하였을때 절연체는 매우 낮은 열적 안정성을 가지고 있기때문에 종종 절연체의 허용 온도 상승은 장비 사용의 제한을 두게 된다. 따라서, 절연 재료의 열적 특성을 이해하는 것은 장비의 설치와 디자인과 관련해서 매우 중요한 문제로 여겨진다.


a) 비열 (Specific Heat)


비열의 사전적 의미: 물질 1그램의 온도를 1℃ 올리는  드는 열량과  1그램의 온도를 1℃ 올리는  드는 열량과의 비율물의 비열은 1cal/g℃로서모든 물질 가운데 가장 크다(네이버 국어사전:https://ko.dict.naver.com/#/entry/koko/6008e6d946bc423395a59a1b38a94819).


열적 전달의 관성력으로 인해서, 절연 물질은 반드시 짧은 열적 펄스를 흡수 할 수 있어야 한다. 그리고 이러한 열적 펄스는 급작스런 부하의 변화로 인해 온도의 증가로 인한 열적 용량을 통해 일어난다. 비열(specific heat) c 로 표기한다.


m=질량

W=공급된 에너지


b) 열 전달(Heat Transport)


정적인 작동 조건에서의 지속적인 스트레스의 작용동안, 저항의 손실로 인해 열이 생성되며 이러한 열은 반드시 주변으로 방출되어야 한다. 전달 매커니즘은 열적 전도성, 열의 대류성, 열의 복사(방사선)로 이루어진다. 열 전도에서, 열적 전류의 흐름은 다음의 수식으로 표현되어 지다.


A: the area of the plate

s: the plate thickness

 (T1 - T2):the temperature difference

λ 는 열적 전도율로서 기술적으로 적용된 온도 범위네에서는 일정하다고 가정한다.


전기적 장비로부터의 빠른 열손실 제거는, 좋은 열적 전도율이 요구된다. 이러한 요구 조건은 크리스탈라인 절연 재료가 최고의 옵션이 될 수 있는데, 그 이유는 크리스탈 격자에서의 원자의 규칙적인 배열과 작은 원자 간격은 원자의 움직임의 좋은 전달을 확보 할 수 있기때문이다. 대조적으로, 비결정질 구조의 재료는 뚜렷하게 안좋은 열적 전도율을 가지고 있다 (크리스탈라인의 구조 vs 결정쿼츠)


quartz crystal λ = 6 ... 12 W/mK vs quartz glass λ = 1.2W/mK

쿼츠(석영) 성분의 좋은 열적 전도성은 상당한 양의 λ을 증가시 킬 수 있다(몰딩으로 채워진 케이스). 그리고 이러한 경우는 크리스탈 쿼츠가 모래의 형태 또는 쿼츠 파우더의 형태로 여과 재료(filter material)로 사용되었을때를 말한다.

열의 대류에의한 열전달에 관해서는, 열적 전류 P 는 경계면 면적 A에 비례한다. 그리고, 열 방출과 흡수의 온도차에도 역시 비례 한다.


α: 열적 변화 수


c) 선형 열적 팽창(Linear thermal expansion)


절연 재료들은 건설 재료들이며 빈번하게 메탈과 접촉하게 된다. 유기 절연 재료들의 매우 큰 열적 팽창에 관해서, 기계적인 과응력(overstress)의 위험이 존재한다. 그리고 이것은 더 큰 균열을이나 전극의 분리현상을 가져 올 수 있다. 무기(inorganic) 절연 재료들의 관해서는, 선형의 열적 확장은 메탈보다는 낮은편이다. 따라서, 유기(organic) 물질을 무기 물질들(epoxy resin with quartz) 추가함으로써 선형 열적 팽창의 값을 향상 시킬 수 있다. 부분적으로, 크리스탈라인의 물질은 비결정질 구조의 물질보다 매우 큰 열적 팽창지수 가진다.


d) 열적 안정화 (Thermal stability)


절연 재료로서 중요하게 여겨지는 요소 중 하나는 열이 가해졌을때 형태를 유지하는 능력이다. 이를 결정하기 위한 2가지 방법이 있다. 첫번째 방법은 Martens 방법이며. 10 x 15 mm^2 단면 과 120mm 길이의 표준 테스트 전극에 균일한 응력(휨 응력(bending stress) 500N/cm^2)에 노출 시킨다. 동시에, 주변 공기의 온도는 50°C/h의 비율로 증가한다. 그리고 물체가 특정한 휨현상을 보여주며 형체의 변화가 생기는 온도를 측정하는것을 Martens 방식이라고 한다.


두번째로는, Vicat 방식으로써, 1 mm^2의 뭉툭한 형태의 바늘을 10N 또는 50N의 힘 조건하에서 1 ± 0.1 mm로 절연체를 뚫는 온도를 측정한다. 다음의 표는 위의 두 방식에 관한 물질들의 정보를 보여준다. 



플라스틱 범위에서는, 몰딩은 장력, 압축, 휨강도에서 감소를 보여줄 뿐만 아니라, 전기적, 절열적 성분의 상당한 왜곡현상을 보여준다. 열이 가해졌을때 모형 유지력의 높은 값은 무기 형태의 물질이 유기 형태의 물질보다 훨씬 우수한 능력을 보여 준다.


출처:

D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.



전기적 특성 테스트(Electrical properties) Part 2


c) 트랙킹 강도(Tracking strength)


절연 시스템이 전기적으로 스트레스(stress)를 받을때, 표면 저항에 의해 결정되는 전류는 표면을 흐르게 되고 이러한 전류를 누수 전류 또는 크립페이지 전류(creepage current)라고 한다. 쉽게 이야기 하자면, 주변 환경들 (온도, 압력, 습도, 오염도 등)은 이러한 누수 전류값 결정에 있어서 핵심적인 역할들을 한다. 절연 물질은 기술적으로 이러한 누수 전류에 관하여 잘 견뎌내야 한다. 만약 견뎌내지 못하거나 한계 값만을 버틴다면, 표면 성분의 품질 저하 또는 악화 현상이 일어나게 된다.


누수 전류 (Leakage currents)는 열을 생성하며, 또한 그 작용으로 인해 표면의 화학적 응력(stress)을 가하게 된다. 과 응력의 시각적 효과는 추적가능해지며 이러한 결과는 절연 재료의 변질이나 부패로 인해 발생한다. 이러한 현상들은 전도성 경로의 형태로 나타나며 추가적인 전기적 응력을 통해 절연 물질의 악화를 초래하고 또는 전도성 경로를 남기지 않고 침식을 야기 하게 된다.


비록 절연 물질들이 침식에 의해 반대로 영향 받더라도 (예를들어, 먼지 퇴적물의 감소), 추가적인 전기적 응력성이 가능하지 않다. 침식은 plates 나 pits에서 일어난다 (Figure. 2.2-4)





이러한 트랙킹은 야외 지역의 절연 표면을 제한할 뿐만 아니라, 원치 않은 상황에서 실내 조건에서 일어 날 수 있으며 심지어 장비 내부에서도 일어날 가능성이 있다.

이러한 트랙킹 현상은 물질의 특성, 전극과 표면의 형태나 마감처리 등의 영향을 받게되고 또한 외부 조건들에 의해 영향을 받기도 한다. 여러 트랙킹의 합류는, 완전한 플래시오버(섬락현상)이 일어나기 쉽게 만들거나 섬락현상을 초래하게 된다.


Figure 2.2-5는 전극이 최소 3mm두께의 절연 샘플위에 올려져 있는 모습이며 이 전극에는 380V 의 AC 전압이 걸려 있다. 피펫(pipette) 은 미리 정해진 전도성의 물질을 매 30초당 한방울씩 샘플위에 떨어트린다. 그리고 이 방식은 전극들 사이에서 절연 물체 표면을 젖게 만들고 또한 누수 전류(leakage currents) 를 일으킨다. 샘플의 떨어지는 방울의 수는 자동적으로 테스트 회로의 스위치가 차단될까지의 값을 측정하거나 방울 드랍으로 인한 표면의 가장 깊은 구멍의 깊이를 측정한다.



d) 아크 저항력(Arcing resistance)


상당한 양의 전력 아크와 함께 절연체 표면을 가로지르는 플래시어보(섬락현상)은 매우 드물다. 하지만, 절연 시스템에서 기본적으로는 존재 가능한 상황이기도 하다. 다시 말해서, 절연체는 아크 현상에 노출되지 않거나 노출되더라도 최소한의 상태로 노출 시켜야 한다. 즉 아크현상에 대해서 강항 저항력을 가져야 한다. 


높은 아크 온도와 절연 물질의 불완전한 연소때문에, 전도성 경로가 남게 되고 더이상 추가적인 전기적 응력을 허용할 수 없게 된다. 아크 저항력의 값을 측정하기 위해서는, 탄소성 전극은 220V의 DC 전압이 적용되게 되고 절연 판(insulating plate)에 배치되게 된다.


아크가 절연체 표면에 내려치게 되면, 전극은 약 1mm/s 속도로 이동하게 되며 최대 20mm까지 분리되게 된다. 아크 저항력은 6단계의 레벨로 나타난다 (L1~L6). 그리고 이러한 레벨은 절연 물질을 판단함에 있어서 참고 된다.


전기적 아크현상(electric arc)(https://en.wikipedia.org/wiki/Electric_arc)



e) 절연(유전) 상수(율)와 소산(흩어짐) 요인(Dielectric constant and dissipation factor)


유전율 εr 절연물질에서의 분극화효과로 부터 유발된다. 실질적인 절연 물질에 관해서는, 변형 분극화(electronic, ionic, lattice polarization)를 제외하고, 지향 평극(orientation polarization)이 특히 중요하다. 그 이유는, 실제로 많은 절연 물질들이 그 자체의 분자 구조에서 영구적인 쌍극자(permanent dipoles: 쌍극자(작은 자석과 같이 양과 음의 자극 또는 전극이 서로 마주 대하고 있는 물체))를 보유하고 있기 때문이다.


이것은 분극화 손실(polarization losses)의 주요 원인이며 tan δ과 εr 의 주파수 독립성에 관해서 영향을 주게 된다.(tan δ and εr : 기술적으로 중요한 파라미터)



다양한 분극화 매커니즘은 서로 다른 완화 시간을 소유하기때문에, 주파수 함수로써 εr의 변화는 Figure 2.2-6에 나타나 있다. 서로 다른 완화 시간은 주파수 제한을 생성하게 되는데 (각각의 매커니즘은 더 이상 존재하지 않음) 그 이유는 상응하는 쌍극자(dipole)의 움직임이 일어나지 않기 때문이다. 이것이 왜 유연율 εr 이 반드시 감소되어야 하는 이유 이다.


계단형식 εr 의 단계 변화는 쌍극자 움직임의 변화에 의해 설명될 수 있다. 유전율 εr의 각각의 변천 영역에서는, 소산 요인 tan δ 최대값을 갖는다.


하지만 오직 위의 그림 a~b영역은 절연의 기술적 측면에서 매우 흥미로운데, 즉, 지향 편극(orientation polarization)이 사라지는 주파수 영역이다.


절연 물질의 특성의 관한 이야기는 전압과 온도의 의존도에서 시작하게 된다. 만약 커브 tan δ=f(U)가 이온화의 무릎 포인트(포화 시작단계)을 보여준다면, 부분방전의 시작을 증명하게 된다.


뿐만아니라 분극화 손실의 발생은 이온적 전도로 인해 절연 손실이 커브 tan δ=f(ν) 부터 식별 된다. 


tan δ 과 εr 의 측정은 잘 알려져 있듯이 브릿지 회로를 통해 결정된다. 


출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.






전기적 특성 테스트(Electrical properties) Part 1


a) 절연파괴 전계 강도 (Breakdown field strength)


절연 물질이 절연 파괴 전계의 값을 일정하게 유지하지 않더라도, 절연 물질에서 절연 파괴 전계의 강도를 측정하는것은 너무 나도 중요한 과정중에 하나 이다. 더욱이 절연파괴 전계 강도는 여러가지 요인들에 의해 많이 또는 적게 영향을 받는데 이에 해당하는 조건들은 다음과 같다.


  • 전극 곡면의 반경과 표면의 마감 처리 상태(radius of curvature and surface finish of the electrodes)
  • 레이어의 두께(layer thickness)
  • 전압의 종류(type of voltage)
  • 스트레스의 작용 기간(stress duration)
  • 압력(pressure)
  • 온도(temperature)
  • 주파수(frequency)
  • 습도(humidity)
  • etc...
몇몇의 특정 절연 물질과 전극의 구조의 관한 알려진 전계 강도의 값들은 현재 이용 가능하다 (e.g. 표준 조건과 다른 구조에서의 air 와 SF6). 이런 특정 경우를 제외하고는, 절연에 사용되는 물질은 그것의 특수한 목적에 맞춰서 실험의 반복을 통해 결정 되어야 한다.

고체 절연 물질들은, 절연 파괴 전압의 측정 또는 균일 전계 또는 약한 비균일 전계에 존재하는 접시모양의 샘플에서의 절연 파괴 전계의 측정 값들로 부터 일정 기준들이 이용 가능하다. 가스형태와 액상형태의 절연 물질들은 천체 모양의 기구(spherical segments) 사이에서 테스트 되어진다.


Figure 2.2-1은 최대 3mm의 두께의 해당하는 판(plate) 또는 호일의 절연 파괴 전계 강도 표준화된 실험 상태를 보여준다. 절연체 판 표면에 활공(gliding)성 방전을 예방하기 위해서 전체적인 배열은 적합한 절연 상수를 가진 절연 용액안에 내장되어야 한다.


Figure 2.2-2는 천체 모양을 한 전극의 배열을 보여주며 가스화 그리고 액상의 절연 물질들은 2.5mm 간극에서 절연 파괴를 일으킬 수 있도록 테스트 된다.


교류 전압(alternating voltage)가 적용된 절연 파괴 테스트는 0 부터 절연 파괴의 전압까지 약 10~20초 사이에 이루어져야 한다. 5개의 샘플에서 중간의 값으로 테스트 값을 정하며 만약 5개 샘플 중 하나라도 중간 값으로부터 15% 이상 또는 이하를 벋어나게 되면 5개의 샘플 테스트 진행 후 총 10개의 샘플에서 중간 값을 테스트 값으로 정한다.


절연 파괴 전계는 절연파괴 전압과 전극의 최소 간극(the smallest electrode spacing) 으로 부터 얻어질 수 있다.



b) 절연 저항력 (Insulation resistance)


실질적인 절연 시스템들은 종종 스트레스가 병렬로 있는 많은 절연체(dielectrics)로 구성된다. 예를들어, 지지 절연체(Support Insulator)의 절연 병렬에서 표면 저항과 볼륨저항의 조합으로 구성된다. 보통 구체적인 저항력 (Ω cm)으로 나타내어 지는 볼륨 저항력은 종종 주변 환경과 관련해서 독립적이다. 반면에 표면 저항은 주변 요건 (압력, 온도, 습도, 먼지 등)에 의해 상당한 영향을 받는다. Figure 2.2-3은 플레이트 타입(plate type)의 절연물질 샘플의 볼륨 저항 측정 배열을 나타낸 것 이다. 


플레이트 타입의 샘플을 지지하는 전류가 흐르는 전극 (the live electrode)은 측정 전극 반대편(measuring electrode)에 배열된다. 볼륨 저항은 적용된 DC 전압(100V 또는 1000V) 측전 정극으로 부터 얻어진 전류를 통해 계산되어 진다. 측정 전극 주변에 1mm 간극안으로 집중적으로 배치된 가드 링(guard ring)은 표면 전류로 인해 발생되는 오류 측정을 예방한다. 그리고, 튜브 모양의 절연 재료 샘플들은 특별한 테스트 배열을 통해 측정 가능하며 이에 해당하는 물질들은 녹을 수 있는 절연체나 액상의 절연체들이 해당된다. 


보통의 절연 물질들은 구체적으로 10^12~10^13 Ω cm의 볼륨 저항성을 가지는 반면 우수한 성질의 절연체들은 최대 10^17Ω cm 또는 이상의 볼륨 저항성을 가진다.


출처: [1] D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.



절연 시스템을 측정함에 있어서는 시스템의 관한 정확한 지식, 강도, 전기적 스트레스의 작용 시간, 주변 상황 등, 여러가지를 복합적으로 고려하여야 한다. 이러한 특성들을 알고있는것도 중요하지만 절연 재료의 특성을 이해하는것도 반드시 필요한 과정이다. 이러한 재료의 특성을 이해함으로써 절연시스템 구축에 있어서 최적화 조건을 이끌어 낼 수있으며 경제적인 선택 또한 가능해진다. 


하지만 고려해야 할 상황중 하나는 절연체 성질을 이해함에 있어서 표준화된 조건에서 이루어져야 한다. 왜냐하면, 물질에 대한 이해는 종종 표준화된 조건없이 이해되기가 어렵기 때문이다. 추가하자면, 많은 절연체 특성의 대한 이해는 통계적 수치에 의존하는 편이며 반드시 안정성 마진을 고려해야 한다.


절연물질로써의 자격 조건(Requirement for insulating materials)


절연체의 가장 중요한 기능은 전압을 전달하는 전도체는 다른 전도체 또는 ground(or earth)로 부터 절연(전기적 흐름을 차단) 한다는 것이다. 하지만, 이러한 절연체는 기계적, 열적, 화학적으로도 견딜 수 있는 능력을 지녀야 한다. 이러한 다양한 종류의 작용들은 동시 다발적으로 일어날 수 있으며 그로 인해 혼합된 영향들을 절연체에 끼칠 수 있다.


궁극적으로 절연 물질의 경제적인 선택에 있어서 고려해야할 사항은 실생활에서 다양한 stresses(강도, 응력)들 아래서 오랜기간 사용이 가능한지의 여부이다.


장비에 무게와 종류에 관하여 다음의 조건들은 절연체 선정에 있어서 중요한 고려 사항들이다.


  • 높은 전계 강도(high electric strength): 가능한한 적은 설치공간, 저 비용, 적은양의 재료 사용
  • 낮은 절연능력 손실: 절연체에서 발생하는 열을 최대 열 전도 한계점 이하로 유지
  • 표면 응력 기간동안의 높은 추적 강도: 절연체의 침식이나, 추척(tracking)의 방지, 적합한 절연의 일정성.

기계적 강도의 조건은 대부분 절연체의 구조적 물질과 그의 관한 내력벽(load-bearing)의 특성으로 부터 결정된다. 장비의 조건에 따라서, 고려되어야 할 중요 사항들은 장력(tensile strength, e.g. overhead line insulators), 휨 강도(bending strength, e.g. post insulator in substation), 압력의 대한 강도(pressure strength, e.g. pedestal insulators of antennae) 또는 bursting-pressure withstand 강도(e.g. circuit breaker insulators stressed by internal pressure) 등이 존재 한다. (*bursting-pressure withstand 강도: 내부에서 밖으로 향하는 압력을 버티는 강도를 일컫는 듯 하다, 영문책으로 부터 정보를 얻다보니 혼란스러운 용어들이 존재함.) 추가적으로 고려될 수 있는 기계적 사항들은, 탄성력, 견고성, 회복력등이 있다.


전기적 장비나 시설들은 종종 정상 작동 기간 또는 동작 실패 조건에서 발생되는 증가된 온도에 노출되게 된다. 따라서 절연체의 열적인특성을 고려할때 다음을 생각해야 한다.


  • 높은 단열 강도

  • 열 작용시 제품의 높은 형태 유지성

  • 높은 열 전도율

  • 낮은 열 확장 계수

  • 불에 잘 타지 않는 조건

  • 아크(Arc) 현상의 대한 강한 예방능력.

마지막으로, 절연체에 사용되는 물질은 주변환경에 관련하여 안정적이어야 한다. 오일, 온존의 대한 저항성, 불투수정도(impermeability), 습도로부터의 회복력(hygroscopic resilience), 낮은 수분 흡수력, 방사 안정성(radiation stability)등은 추가적으로 고려될 요소들이 될 수 있다. 

가공성(processability), 실행 가능성(workability), 균질성(homogeneity), 공간적 안정성 (dimensional stability)등의 기술적 요소들은 경제적인 생산에 있어서 매우 중요하므로 이들 또한 고려되어야 한다.

따라서, 고 전압 시스템(High Voltage System)에 적용되는 절연 물질들은 반드시 많은 수의 요구 조건들을 충족시켜야 하며, 심지어 조건들이 모순적이거나 잘 들어 맞지 않더라도 최대한 많은 수의 조건들을 충족 시켜야 한다.

결론적으로, 특수한 목적을 위해 절연 물질을 고름에 있어서 다양한 요구 조건과 이에 상응하지 안흔 물질의 특성간의 최적의 절충안을 찾는 과정이 반드시 필요하다.


출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.



여기에서는 미델회사에서 생산하는 이스터 베이스의 용액들중 하나인 MIDEL eN 1215을 알아보려 한다.


MIDEL eN 1215 은 대두(콩)으로 부터 생산되는 식물성 이스터 트랜스포머 용액이다. 현재 미국에서 그 지역 대두(콩)을 이용해 생산중이다. MIDEL eN 1215는 자연적 이스터 전연 용액으로써 현재 널리 사용되어지는 미네랄오일, 실리콘 용액, 또는 건식의 트랜스포머의 대체제로 주목 받고 있다.


MIDEL eN 1215은 높은 발화점을 가지고 있으므로 화재 위험성으로부터 안전한 편에 속하기때문에 트랜스포머의 추가적인 화재 방지 장비 구축에 있어서 경제적, 공간적 소비를 줄일 수 있다.


MIDEL eN 1215은 식물성 오일로부터 생산되기 때문에 지속적인 재생산이 가능하다. 또한, 식물성 분해가 쉽게 일어나기 때문에 환경오염으로 부터 상대적으로 자유로우며 장비의 오염 가능성 또한 낮은 편이다.


MIDEL eN 1215을 가장 효과적으로 사용가능한 곳은 기후가 온화하고 장비들이 산소에 노출되지 않은 곳에서 가장 적합하다.


MIDEL eN 1215은 습도에 매우 강하다 (high moisture tolerance) 그리고 이러한 특성은 섬유성 절연체 수명의 연장을 이끌어 낼 수 있다.


MIDEL eN 1215는 넓은 범위의 트랜스포머의 적용이 가능하며, 산소와 접촉이 없는한 실내와 실외 모두 사용가능하다.


트랜스포머의 화재는 전 세계 파워 네트워크에서 빈번하게 일어나는 사고 이며 이러한 화재는 매우 빠르게 전이되어 추가적으로 설비의 손실을 이끌어 낼 수 있다. 


따라서 발화점이 높은 MIDEL eN 1215이 새로운 방안으로 제시 될 수있다.

MIDEL eN 1215 용액이 가지는 특성(https://www.midel.com/app/uploads/2018/05/MIDEL-eN-1215-Product-Brochure.pdf)




MIDEL eN 1215은 높은 발화점으로인해 아주 우수한 절연능력을 보여주며 이미 입증되있듯이 미네랄 오일에 비해 상당히 안정적이다. 또한 대두(콩)으로 부터 생산되기 때문에 매우 친환경적이며, 지속적인 생산이 가능하며 무독성, 높은 생물학적 분해능력의 장점을 가지고 있다. 


MIDEL eN 1215은 습도에 있어서 강한 내구성을 지니고 있기 때문에 특히 섬유소 베이스의 고체 절연의 수명을 늘릴 수 있으며 결론적으로 파워 트랜스포머의 수명 연장 또한 가능하다.


MIDEL eN 1215의 몇가지 특성을 간략하게 요약해보면 다음과 같다.


  • 높은 발화점(300℃ 이상)
  • 불에 잘 타지 않는 용액
  • 실내와 실외 모두 사용가능(산소와 접촉이 없을시)


  • 재생가능한 식물성 오일로부터 생산
  • 미네랄오일의 비해 낮은 탄소배출
  • 손쉬운 생물학전 분해
  • 무독성
  • 부식성 황(Sulphur)가 존재하지 않음
  • 우수한 습도 내구성: 많은 양의 수분을 절연파괴 전압의 감소 없이 흡수 가능
  • 높은 습도 포화 한계성( 1100ppm @ 20℃)


  • 미네랄 오일에 비해 장비의 수명을 높여줌
  • 표준온도에서 더 높은 섬유소 수명 보장 가능
  • 고온의 절연 없이 더 높은 파워 생산(power output) 가능


  • 추가적인 화재시설이나 고온절연이 필요 없기때무넹 간단한 디자인이 가능해짐
  • 또한, 높은 유연성과 높은 발화점으로 인해 미네랄 오일에 비해 과부화가 가능해진다.


파워 트랜스 포머는 대게 정격 전압이 33kV이상이며 에너지 인프라에 있어서 매우 핵심적인 부분이다. 하지만, 매우 비용이 높으며 운반하기가 상당히 어렵다. 이러한 파워 트랜스포머들은 종종 인구가 많은 지역에 설치되거나, 환경적으로 예민한 지역에 설치 수도 있기 때문에 항상 화재의 위험성과 환경오염 가능성을 최우선적으로 고민해야 한다.


현재 MIDEL 회사는 MIDEL eN 1204, MIDEL eN 1215, 그리고 MIDEL 7131 세가지의 이스터 베이스의 용액을 생산중이며 이 세가지 용액 모두 트랜스포머에 최대 400KV까지 적용 가능하다. 세 용액 모두 쉽게 생물학적 분해가 가능하기때문에 친환경적이며 장비 오염적 측면에서도 우수한 성능을 보여준다.


특히 MIDEL 7131(합성 이스터 용액)은 뛰어난 산화 안정성때문에 야외나 실내 모두 사용가능하다. 다시 말하면, 장비가 산소에 노출되는경우 노출되지 않는경우 모두 적용이 가능하다.


반면에 MIDEL eN 1204(rapeseed), MIDEL eN 1215(soybean)은 유채씨, 대두()등에서 추출되기 때문에 매우 친환경적이며 재생가능한 식물성 오일로 부터 생산이 가능하다. 하지만 상대적으로 낮은 산화안정성때문에 산소와 접촉이 없는 장비에만 적용이 가능하다. 유채씨로부터 생산되는 MIDEL eN 1204은 콩으로 부터 생산되는 MIDEL eN 1215(soybean)보다 유동점이 낮기때문에 (-31) 추운 지역에서 이용이 가능하다.




 

출처: https://www.midel.com/midel-in-use/power/


오염된 절연체의 섬락현상의 발생은 매우 복잡한 과정이며 우연에 의해서도 일어날 가능성이 있다. 따라서 몇가지 설명이 가능한 프로세스들을 예를 들어보자.

A) 건조 밴드의 형성 (Formation of dry bands)



Figure 1.6-4a 는 균일 오염 전도층 (σs)를 가지는 평면 구조를 보여준다. 이 경우 누수 전류가 흐르게 되고 이러한 누수 전류는 선형의 전위 분배를 발생시킨다. 이러한 현상은 특정한 양의 건조 오염층으로 이끌게 되고 figure 1.6-4b 처럼 부분적으로 넒은 밴드 현상을 유발 할 수 있다. 이러한 건조 밴드층에서는 다른 σs 값은 갖게되고 전류는 일시적으로 매우 작아지게 된다. 마지막으로, figure 1.6-4c 처럼 각각의 밴드는 부분적 아크(불꽃)로 인해 브릿지 현상(절연체가 전도체가 되는 현상)을 겪게되며, 결국에 완전한 섬락 현상으로 유도하게 된다.

이 경우는 만약 표면이 완전히 건조한 경우 방지되게 되고 다시 한번 선형 전위 분배를 발생할때 위험 레벨보다 훨씬 더 낮은 전류의 값을 갖게 된다. 이러한 현상은 마치 균일한 건조와 연속적인 부분 아크사이의 경쟁처럼 여겨질 수 있다.

B) 오염모델을 통한 안정성 고려(Stability considerations using the contamination model)

Figure 16.5에 따르면, 건조 밴드와 오염층을 보유한 절연체는 직렬연결의 아크(arc) 경로 길이 x 와 '균일 저항층/단위길이'의 저항에 의해 대표된다 R'=R'(I). 이 모델과 함께 연소된 아크의 연장이 또는 소멸이 조사 되어질 수 있다.

총 전압 U는 아크와 오염층을 가로지르는 부분전압으로 구성된다. 아크 전계 강도 Eb=Eb(I) 와 관련해서

$U=E_bx+IR"\left(s-x\right)$U=Ebx+IR(sx)

방전이 소멸되는 조건에서는, 전압은 아크가 가지는 성향을 기초로한 아크 확장에 의해 얻어진다. 그리고 Eb(I)는 더 저항층읠 가로지르는 공급체로부터 사용가능한 전계보다 훨씬 더 빨리 증가하게 되는것을 추정할 수 있다.

$\frac{\partial \left(E_bx\right)}{\partial x}>\frac{\partial \left(U-IR"\left(s-x\right)\right)}{\partial x}$(Ebx)x>(UIR(sx))x

추가적으로 추정될 수 있는것은, 아크 전압은 오직 작의 부분의 전압 U를 형성하며 전류 I는 x에 관해서 독립적이게 된다 (소멸 조건에서).

$E_b>IR"$Eb>IR

이후, 만약 특정 중요 전류 값(Ik)을 초과 했을 경우 아크의 순방향 성장이 반드시 나타나게 된다.

$I_k=\frac{E_b}{R"}$Ik=EbR



위의 그림은 아크의 순방향 성장과 아크의 소멸 경계면에 관한 다이어그램이다. 이 경우는 Eb와 R'가 전류가 증가할때 감소한다고 가정된다. 빗금이 쳐진 영역에서는 아크는 최종적으로 완전한 섬락현상으로 발전되게 된다. 이 경우 대략적인 Ik 의 값은 다음과 같다.

$E_b=b\cdot I^{-n}$Eb=b·In
$R"\sim const\ 라고\ 가정한다면$R~const  
$I_k=\left(\frac{b}{R"}\right)^{\frac{1}{n+1}}\sim \sigma _s^{\frac{1}{n+`}}$Ik=(bR)1n+1~σ1n+`s

다시 말하면 특정 최대 허용전류가 존재한다면 섬락현상 또한 존재가 가능하다. 실제로, 오염층과 관련된 절연 실패에 관해서, 섬락현상 이전에 최대 누수 전류는 오염형태에 상당히 독립적인 측정값이다.




Figure 1.6-7은 누수 전류가 완전한 섬락현상으로 발전되는 과정을 보여주며 figure 1.6-4의 아이디어를 기반으로 하고 있다. 하지만 더 중요한것은 Ik에 상응하는 Uk의 값이며 이 값은 만약 아크(arc)의 길이가 중요 길이 보다 훨씬 짧다고 (x≪s) 가정되었을때 구할 수 있다.



절연체 길이 s에 관한 아크 전압의 선형적 의존성은 이미 고전압에 관하여 증명되었다. 지수 n/n+1에 관하여 0.2~0.6사이의 값들이 얻어지게 된다.

처음의 대략적인 값은 심플하게 n=1을 통해 얻어진다. 즉, 다음과 같다.



비록 이러한 복합적인 시뮬레이션 모델이 실제 조건들보다 훨씬 나을지라도, 실제적인 요소들 (즉, 실험값)들을 간과해서는 안된다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


고 전압 시설들은 가끔 가스가 있는 환경에 절연체를 포함한 경우가 있으며 이 경우 플래시오버(섬락)에 의해 stress를 받게 된다. 만약 오염된 레이어가 절연체의 표면에서 발달하게 된다면, 절연체의 전계 강도는 급격하게 감소하게 된다. 이러한 현상은 오버헤드라인, 야외 스위칭 스테이션 등 여러 장소에서 발생 가능하다. 그리고, 장기적은 측면에서 대기 오염 현상은 고 전압 네트워크의 안정성에 아주 큰 영향을 끼칠 수 있다.

오염레이어의 발달과 효과(Development and effect of contamination layers)

고형의 물질과 가스화된 물질사이의 경계면에서는 둘의 다른 물리적 매커니즘에 의해 응축이나 흡수같은 현상이 일어나게 된다. 추가로 공기중에서는, 절연체는 먼지 분자들의 축적에 의해 오염된 레이어를 형성할 수 밖에 없다. 이러한 현상은 일반적으로 질적측면의 설명(quantitative description)이 힘들다. 따라서 이 현상을 설명하기 위해서는 조사와 실험을 통해 접근하여야 한다.

A) 수분 레이어(Moisture layer)

대기중의 공기는 항상 상당한 양의 수분을 포함하고 있다. 깨끗한 실험조건에서 물분자의 퇴적(또는 축적)은 대게 절연체 표면에서 일어나게 되고 humidity value F>50%이상일때 섬락전압 (Ud)의 감소를 이끌어 낸다(Fig. 1.6-1). 즉 낮아진 섬락 전압으로 인해 섬락(flashover)의 현상이 나타날 가능성이 높다.



이러한 현상의 원인은 절연체 표면의 물의 단일분자 필름 형성 (the formation of a mono-molecular film)때문이다. 심지어 주변 공기의 포화 습도 보다 낮은 상황이더라도 동일하다. 따라서 이러한 섬락 전압(the flashover voltage)를 줄이기 위해서는 절연체 표면의 마감 그리고 전압의 형태등 여러 사항들을 동시에 고려하여야 한다. 야외의 절연체에서는 화학 결함하는 수분층이 비, 안개, 또는 이슬에 의해 과냉각된 절연체에 발생할 수 있다(특히, 이른 아침시간에 발생할 가능성이 높다)

섬락전압에 있어서 수분이 주는 영향은 절연체로 쓰이는 SF6가스 절연 시스템에 있어서 또한 중요하게 여겨진다. 다시 말하면, 가스를 사용하는 절연 시스템은 고체 표면에 생기는 수분, 즉 이슬점에 도달하지 않기 위해 충분히 건조한 상태를 유지하여야 한다.

B) 전도성 오염층(Conducting contamination layers)

대기중에서는 먼지같은 불순물들이 물체에 표면에 쌓이는 경향이 있다. 이러한 오염층(the contamination layer)이 절연체에 미미하게 쌓이면서 건조한 상태를 유지한다면 섬락전압(flashover voltage)에 주는 영향은 크지 않다. 하지만, 만약 이러한 오염층이 충분히 쌓이면서 수분을 머금게 된다면 절연체의 전기전 강도 감소에 아주 큰영향을 주게 된다.

크게 오염된 층이 다른 형태의 전압에 주는 영향은 다음과 같다.



오염층이 각각 다른전압에 미치는 감소율

오염된 절연체의 행동은 교류 또는 직류 전압하에서 동작 스트레스(the operating stress)에 아주 큰 영향을 미친다.

다음 3가지의 오염이 공통적으로 일어난다.

1. 염분 안개 오염(salt fog pollution)은 주로 해안가 근처에서 일어나며 수 Km의 내륙까지 전달 될 수 있다. 실생활에 비슷한 예로는 겨울철 도로에 뿌리는 염분의 물질 (보통, 염화 칼슘)의 효과와 비슷한다.

2. 산업 공해 또한 이에 해당하는데, 잘 알려진대로 이러한 산업 공해는 인근 지역의 화력 발전소, 석탄 발전소, 시멘트 공장등 으로부터 발생한다. 이러한 산업 먼지들은 보통 비활성 먼지이며 염분과 섞여있다. 초기에는 이러한 먼지들이 건조한 상태지만, 후에 수분과 접촉하게 되면 전해질적인 전도성을 같게 된다. 또한 종종 이러한 전도성 오염층은 수분에서의 산성 형태의 가스(e.g. SO2)에 의해 발생하기도 한다.

3. 세번째의 경우는 사막 오염인데, 이 경우는 사막 부근에서 발생한 먼지가 절연체 주변에 쌓이게 되는 경우이다. 이렇게 발생된 먼지는 바람에 의해 날리게 되며 염려 되는 지역에 먼지층을 쌓게 된다. 예를들면 절연체 그늘막에 안쪽이나 뒤쪽 처럼 접근 하기 힘든 부분에 쌓이게 된다.

이 모든 종류의 전도성 오염층은 절연체 표면에 위차하게 되고 누수 전류 I를 적용된 전압과 함께 포함하게 된다.




$R=\frac{1}{\sigma _s}\cdot \frac{1}{\pi }\int _0^{s_k}\frac{dx}{D\left(x\right)}=\frac{1}{\sigma _s}K_f$R=1σs·1πsk0dxD(x)=1σsKf
$R:\ the\ leakage\ resis\tan ce$R: the leakage resistance
$s_k:\ the\ creepage\ path\ length$sk: the creepage path length
$\sigma _s:\ cons\tan t\ layer\ conductivity$σs: constant layer conductivity
$K_f:\ form\ factor\ \ \left(10\sim 30범위\right)$Kf: form factor  (10~30)



위의 그림에서 보여지듯이 인공 그리고 자연적인 오염에서의 절연체를 조사할때 δs (layer conductivity)는 유용한 측정 방식이 될 수 있음을 보여준다(교류전압 하에서).

직류 전압조건하에서는, 오염층의 형성은 먼지 분자에서 작용하는 정전기적 힘에 의해 아주 큰 영향을 받는다. 전계는 매우 불규칙적인 오염을 이끌어 낼 수 있으며 또한 층 전도성의 불균일함을 가져올 수 있다. 다시 말하자면, 교류 전압에 비해 더 큰 섬락 전압(the flashover voltage)의 감소를 가져오게 된다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


가스, 유체, 고체 절연 물질과 관련된 모든 절연파괴 이론들이 가정하는 것은 이온화 과정에 의해 전도성이 생긴다는 것이다. 고 진공 (p≤10-5mbar)에서, 평균 자유 경로 ( mean free path λ)는 매우 크며, 가스 나머지 부분에서의 출동 과정은 절연 파괴 과정에 있어서 무 의미 해진다. 오히려, 전극에서의 매커니즘이 절연 파괴 행동에 있어서 더 중요하게 여겨진다.

만얀 직류나 교류 전압이 진공 간극에 적용된다면, 예비 전류는 절연 파괴 전압보다 훨씬 더 낮은 위치에서 시작하게 되고, 전압의 증가와 함께 기하급수적으로 증가하게 된다.



$S:\ current\ density\left(A/cm^2\right)$S: current density(A/cm2)
$E:\ field\ strength\left(V/cm\right)$E: field strength(V/cm)
$W_a:\ work\ function\left(eV\right)$Wa: work function(eV)

전극으로부터의 넓은 영역의 전계 방사(field emission)에 관해서, 전류가 측정될 수 있으며 이 전류는 예비 전류보다 몇 배 더 크다. 이러한 현상은 마이크로픽(micropeak)에 의해 전극의 표면에서 나타나며 부분적으로 전계(electric field)를 강화시킨다.

많은 절연 파괴 가설들이 진공 간극(in vacuum gaps)에서 매커니즘을 설명하기 위해 발전되어 왔다. 캐소드 절연 파괴 가설은 전계 방사 전류가 캐소드에 마이크로픽에서 일정 전류 밀도를 넘어서 많은 열 방출로 이끌 수 있으며 이러한 열 방출은 마이크로픽이 폭발적으로 증발함으로 생긴다. 금속에서는, 이온화 충돌로 인한 기포들이 발생하게 된다. 만약 충분한 대전 캐리어의 증식에 도달하게 되면, 진공 간극에서의 절연파괴는 이온화된 금속 기포 운집을 따라서 발생하게 된다.

애노드 절연파괴 가설측면에서는, 전계에 의해 캐소드로부터 방출된 전자가 전계에서 가속화 되고 (에너지 W=eU), 이러한 에너지가 애노드에 열을 가함으로써 애노드 물질의 증기화에 관연하게 된다. 이러한 급속 증기는 충동 과정에 의해 이온화 되게 되고 전자의 방출을 캐소드로 돌려 보내는 업무에 힘을 실어 주게 된다.

애노드에서 충분히 높은 증기화 비율과 관련해서, 메탈 증기 운집안에서 가스 절연 파괴가 일어나게 된다. 또 다른 가설에 따르면, 진공 절연 파괴는 자유 금속 분자에 의해 시작 된다고 하며 이러한 자유 금속 분자는 전극에 잔존하는 것들이며 전계의 힘에 의해 분리되고 가속 된다 (반대쪽 전극에 충돌).



진류 전압의 스트레스와 관련해서 균일 전계 또는 아주 약한 비균일 전계에서의 진공의 간극 (s) 에서의 전기적 강도는 다음의 수식을 만족한다.

$U_d\sim \sqrt{s}$Ud~s

위의 수식은 충동 전압(impulse voltage)와 관련해 짧은 절연 파괴 시간영역(td<0.1μs)에서 확인 되었으며 충동전

압-시간 커브의 가파른 증가가 관측 되었다. Figure 1.5-1에서 보여지는바와 같이 전극 물질은 전계 강도에 영향을 끼친다. 동일한 조건하에서, DC 절연파괴 전압은 전극 재료의 높은 녹는점과 함께 증가한다. 이 행동은 앞서 언급한 여러 가설들에 해당되는 점이다. 전극을 냉각 시키는 것은 높은 녹는점 온도와 같은 효과를 가지며 구조의 전기적 강도를 증가 시킨다 (Fig 1.5-2).

직류 전압 하에서의 절연파괴는 애노드의 아주 강한 부식을 일으키게 된다. 반대로, 캐소드의 표면 마감은 향상되게

된다.



위의 두 그림은 진공 절연파괴 후에 애노드와 캐소드의 전극 표면을 현미경으로 관측한 것이며 그림에서 보여지듯이 애노드 부분에서는 눈에 띄는 침식이 일어난 것이 확인된다.

균일 전계에서의 AC스트레스가 작용하면, 캐소드와 애노드 두 전극 모두 다 동일하게 침식이 일어나게 되는데 그 이유는 전극들이 애노드와 캐소드역할을 번갈아 가면서 맡기때문이다. 이 경우 두 전극 모두에서 침식이 일어나게 때문에 파괴 전압은 dc 스트레스가 작용할때 비하여 낮은 편이다.

반면에 비균일 전계에서는, ac 와 dc 스트레스에서 파괴전압은 모두 동일하다. 그 이유는, 교류 파괴 전압은 (-) 극성의 전극(작은 반경의 곡면을 가지고 있음)에 관하여 일어나는 것을 선호하기 때문이다. 그리고 눈에 띌 만한 침식은 극 반경의 곡면을 가지는 전극에서만 발견되어 진다. 따라서, 비슷한 표면과 절연파괴 전압이 AC와 DC 전압 모두에게서 관측 된다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


액체의 절연파괴 현상은 간단하게 설명되기 어려울 뿐만 아니라, 기술적 경계 조건 측면에서 관측된 현상에 관하여 상당히 크게 의존적이다. 매우 많은 고려사항들이 있지만 이 섹션에서는 가장 중요한 두가지 사항만 이야기 하려 한다.

A) 진성 절연 파괴(Intrinsic breakdown)

가스나 고체의 절연 물질 처럼, 전자 사태 (avalanche)에 의한 절연파괴가 순수 절연 용액에서도 가능하다. 만약 이온화 조건이 Eλ≥Ui 이라고 가정하면, 가스의 액화로 인한 평균 자유 경로 λ (mean free path)의 감소는 반드시 그의 상응하는 이온화 전계 강도 증가에 의해 보상되어야 한다.

LN2의 예시가 보여주듯이 이론적으로 원하는 전계강도의 값은 실험에서 달성하기가 힘들다. 실험적으로 결정된 전계 강도의 값에 대하여 전자의 운동에너지는 액체의 부분적인 기화 효과에 대하여 충분해야 한다(액화 분자와의 충돌에 의한 기화 효과).

작은 가스 버블이 형성된 경우, 큰 평균 자유 경로(mean free path λ)를 가지며, 이 경우가 가지는 우세한 전계 강도는 충돌로 인한 이온화, 전사 사태 형성을 야기 시킨다. LN2의 모델은 파괴 전계 강도를 약 300 kV/cm 정도를 가지게 된다.

기술적으로, 절연 오일은 더 복잡한 매커니즘을 가지게 되는가 그 중 제기되는 하나의 가능성은 다른 요소들의 존재의 원인이다. DC 전계에서 절연용액과 함께하는 전극 구조를 고려해 볼때, 전류 밀도 (the current density) S가 나타나며 몇분 정도 후에 거의 일정한 값에 도달하게 된다(Figure 1.4-3a).



이러한 현상에 관한 원인은 다른 mobility(가동성)를 가지는 대전 캐리어의 존재 때문이다. 마지막 단계로, 일정한 전류가 무거운 전해질 이온에의해 결정되게 되고 이러한 무거운 전해질 이온은 해리(불열, 또는 분리)를 통해 형성된다.

낮은 전계강도에는 옴의 법칙은 가스에서처럼 포화전류 상태에 도달하기 전 까지는 거의 유요하다. 만얀 전계 강도 E가 추가로 더 증가하게 되면, 전류 또한 불균형하게 절연파괴가 일어날때까지 증가하게 된다. 전류 밀도 S 는 다음과 같이 표현된다.

$\overrightharpoonup{S}=qnb\overrightharpoonup{E}\ \left(q=ionic\ ch\arg e\right)$S=qnbE (q=ionic charge)

대전 캐리어의 밀도 n의 증가가 예측 될 가능성이 있으며 그 이유는 가동성(mobility b)가 변화될 이유가 없기 때문이다. 액화된 가스의 절연파괴와 비슷하게, 대전된 캐리어의 증식은 액체의 가스나 기포 부분의 충돌 이온화에 기여할 가능성이 있다. 이러한 현상은 절연 파괴로 이어질 수 있으며 "masked gaseous breakdown"이라고 일컬어 진다. 이 모델은 실험적으로 관측된 절연용액의 전기적 강도가 압력에 따라 증가됨을 설명하는데 도움이 된다.

B) 섬유 브릿지 형성에 의한 절연파괴(Breakdown by fibre bridge formation)

기술적 절연용액은 항상 육안으로 보이는 불순문들은 포함하고 있는데 이에 해당하는 것들은 섬유소 형태의 분자들, 셀룰로오스, 솜(cotton)등의 물질들이 해당된다. 특히 이러한 불순물들이 절연용액으로 부터 수분을 흡수하게 되면, 이 불순물에 향하는 힘이 더 높은 전계 강도의 영역으로 옮겨지게 되고 또한 전계의 방향와 나란히 하게 된다. 이러한 불순물과 대조적으로, 가스 버블은 더 낮은 절연 상수 때문에 가장 높은 전계영역에서 제외되버린다.

이러한 방식으로, Fig 1.4-4에 나타나 있는것 처럼, 전극들 사이의 섬유 브릿지(a fibre bridge)가 생길 수 있으며 이것은 전도 경로는 대표하게 된다. 저항 손실은 상당한 가스 절연 파괴 분자를 포함한 수분의 기화를 야기 할 수 있다. 이 현상은 또한 부분적으로 약한 전도 경로로 부터 오는 열에 의한 절연파괴로 해석 되어질 수 있다. 기술적으로 섬유 브릿지 형성으로 인해 극도의 절연파괴의 생성은 자유 오일 간극의 높은 전기적 응력을 금지한다.

섬유 브릿지 절연 파괴는 절연 스크린을 통해 효과적으로 예방 될 수 있으며 이 절연 스크린은 가능하면 전계에 수직적으로 배치된다. 추가적인 유요 측정은 전극들은 고체 절연 물질 않으로 내장하는 것이며 이 경우 선호적으로 종이 붕대(paper bandage)를 사용한다

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


절연유가 적용되는 대부분의 경우에서는 더 많은 고려사항들이 존재하게 된다. 예를들어 절연유는 트랜스포머의 와인딩과 코어의 열을 식히는데 이용되고 또한, 서킷브레이커의 아크현상(열이나 불꽃을 나타내는 현상)을 끄기 위해서도 쓰인다. 또한, 내장된 캐패시터에서, 절연유는 절연지의 절연 상수를 증가 시키는 역할을 한다.

절연유의 사용은 기술적인 측면에서 기체 그리고 고체 절연 기술과는 조금 다르다. 액체의 절연은 불순물에의해 상당한 영향을 받으며 수명 또한 공간 전하(space charge)의 영향을 크게 받는다. 절연유의 절연파괴는 확실하게 통일된 이론은 없으므로 여러가지 사항을 복합적으로 고려하여야 한다.

A) 절연유 기술적 구조의 전기적 강도(Electric strength of technical configuration with insulating liquids)

고 전압 기술에서는, 미네랄 오일이 절연물질로써 지배적이다. 즉, 절연 지지대(소프트 페이퍼, 프레스보드 등) 부근에서 절연 활로를 연다. 미네랄 오일은 매우 낮은 점성을 가지고 있어서, 트랜스포머의 절연 오일로써 많이 쓰인다. 이러한 점성도는 온도에 매우 의존적이기때문에 다른 적합한 증류액과 섞으므로써 냉각이나 오일을 머금게(침투) 함에 있어서 용이하다.

미네랄 오일은 천연 오일로 부터 추출되며 이러한 절연유는 각기 다른 성질을 가지는 여러 탄화수소의 혼합체이다. 대형의 기술 시스템(트랜스포머 같은)이나 대기와 접촉이 일어나는 몇몇에 경우에 절연유는 불순물이 용해된 가스나 액체의 형태로 가지고 있게 된다. 뿐만아니라, 전도가 가능한 입자나 전도가 불가능한 입자(fibre pieces, sludge) 또한 포함하게 된다.

많은 실험들이 보여주기를 이러한 불순물의 존재는 절연파괴의 특성에 있어서 이상적으로 순수 절연액에 비해서많은 영향을 준다. 사실, 액화된 가스들은 순수 절연액을 대표하는데, 매우 낮은 온도의 질소액이 이에 해당한다(LN2). 액화 헬륨 또한 저온 기술에서 사용될 가능성이 있다.

합성 절연액인 chlorinated diphenyls (염소처리된 디페닐)은 파워 캐패시터에서 절연종이가 머금게 하기 위해 (함침)쓰인다. 미네랄 오일과 비교하였을때, chlorinated diphenyls은 거의 2배 더 큰 절연 상수를 가지고 있었다.

추가적 이점으로는, 불이 잘 붙지 않으며, 예전에는 배전(distribution) 트랜스포머 안쪽에 사용되기에 적합 했다. 하지만 오늘 날에는, 에폭시 레신(epoxy resins)과 함께 건식 트랜스포머에 사용된다.

아래 표는 몇몇의 절연액의 특성을 포함하고 있다.



불순물에 대한 의존성을 제외하고, 전기적 강도는 또한 다른 요소들의 영향을 받는데 특히, 압력과 스트레스(stress duration) 작용 기간이 이 요소들중 하나에 해당한다. 충동 전압의 스트레스작용 동안, 절연 파괴 전계 강도는 많은 영향을 받게 된다. 균일 전계에서의 절연체는 아마 최대 Ed=200 kV/cm 의 절연 파괴 전계를 가진다. 트랜스포머안에 전극의 충동 전압-시간 커브(Figure 1.4-1)는 스트레스 작용효과에 관하여 생각해 보게 만든다.



불순물을 포함한 절연액에 관하여 전형적인 절연 파괴 요건은 큰 확산과 불규칙적인 선-방전(pre-discharge)의 발생 빈도이다(균일 전계 상태도 포함). 더욱이, 순수 액체 간극들에서는(in pure liquid gaps), 절연 파괴는 상당한 자가 회복 작용(self-healing)과 함께 발생한다.



위의 그래프는 절연파괴 전계 강도 Ed의 측정결과 값과 50Hz에서의 분산 요소 tanδ 를 수분 포함 함수 v에 관하여 나타내어졌다. v=50*10-6 을 초과한 지점에서의 Ed 의 감소는 용액이 유화되는 변천을 겪는데 영향을 끼치게 된다.

200kV/cm의 절연파괴 전계 강도에서는 잔존하는 수분 함량은 v<10-5 이어야 한다. 용해된 수분 기포와 대조적으로, 용해된 가스는 보통 절연액에 전기적 강도에 큰 영향을 미치지 않는다 (산소에 의한 노쇠화 과정은 별개). 그러나, 만약 평형생태를 벗어났을때 과포화 상태는 매우 중요한 부분이 될 수 있다. 다시말하면, 용해된 가스들이 아주 작은 버블형태로 나타나게 되는데 이러한 버블들은 기계적 진동 (강제 냉각 순환 등)이나 고 전계 강도에 의해 발생된다.

액체의 절연 재료들은 함침제(impregnants)로 캐패시터의 절연체, 소프트 페이퍼, 그리고 트랜스포머의 프레스 보드에 쓰인다. 뿐만 아니라, 오일이 함유된 페이퍼 케이블에도 적용 가능하다. 그리고, 액체의 절연 재료들은 매우 높은 전기적 강도에 도달이 가능하지만, 효과적인 대류 냉각(convection cooling) 측면에서 비용적으로 효율적이지 못하다.

다음의 표는 각각의 물질들이 20oC에서 가지고 있는 특성들을 보여준다.



위의 표에서 보여지는 혼합된 절연체들은 매우 강한 전기적 강도를 가지며 약 100kV/cm 또는 그 이상의 전계 강도까지 허용이 가능하다. 아주 짧은 순간동안은, 파괴 전계 강도 Ed의 스트레스 값이 약 최대 1MV/cm 까지 측정될 수 있다. 그러나 특히, 매우 높은 주변 온도 상황에서는 열에 의한 절연 파괴상황을 반드시 고려하여야한다. 추가로, 극도록 짧은 순간같은 특이한 경우에는, 심지어 수분또한 매우 높은 절연파괴 전계 강도를 보유하게 된다.

실험적 조건에 따라서, 약 mm 단위의 공간에 대해서 100~500kV/cm의 전계 강도 값을 가질 수 있다 (※작용 시간은 10μs 를 넘지 않는다). 절연용액을 기술적 측면으로 바라본다면, 전기적 강도는 압력에 비례해 매우 급격하게 증가한다. 이러한 특성을 고려해 본다면 매우 높은 절연 상수 εr=약 80을 가지고 있는 물 또한 플래시오버(flash over)의 위험성에 관해서 잘 들어 맞는다고 볼 수 있다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


이번엔 파워 트랜스포머의 절연이란 무엇인지 알아보고 트랜스포머의 어떠한 기술들이 적용되어있는지 예를 들어 알아보려 한다.

A) Transformer Insulation (트랜스포머 절연)

파워 트랜스포머와 관련된 절연 시스템은 액상 또는 가스 같은 유동체로 고형의 물체와 함께 구성된다. 페트롤륨 기반의 오일이 파워 트랜스포머의 절연체로 1880년대부터 1970년대까지 사용되었고 당시에 사용되던 미네랄 오일의 가연성의 문제를 해결하기 위해 도입되었다. 그리고 현재는 오일뿐만 아니라 발화점이 높은 유동체 (e.g. 실리콘, 발화점이 높은 탄화수소, chlorinated benzens, chlorofluorocarbons)들이 사용된다.

가스를 기반으로 하는 절연 시스템은 질소, 공기, 플루오르 성의 기체(fluorogases)들을 포함한다. 플루오르 성의 기체가 사용되는 이유 중 첫 번째는 가연성을 피하기 위함이고 두 번째로는 내부 오류로부터 발생하는 이차적인 문제를 제한하기 위함이다. 어떤 트랜스포머들은 끓는점이 낮은 액체들을 사용하기도 한다 (e.g. 액상화된 프레온). 프레온 액상은 가열된 열을 2 phase 쿨링 시스템으로 전달되는 과정에서 냉매로 쓰인다.

코어 파트와 코일 부분에 있어서, 절연(insulation)은 크게 major insulation 과 minor insulation으로 구분된다. Major insulation과 minor insulation에 해당하는 부분들은 다음과 같다.

Major insulation:

- high voltage winding

- low voltage winding

- core winding

Minor insulation:

- Coil의 일부분

- 설치 구조의 따른 winding 부분

마지막으로 권회간 절연(turn insulation)은 도체의 각 가닥을 절연하거나 그룹 지어진 통째를 절연하는 방법에 해당한다.

B) Oil-insulated Transformer (절연유 트랜스포머)

적은 비용, 높은 절연 내력, 우수한 열전달 특성, 절연 고 응력(dielectric overstress)부터의 회복력 같은 장점들은 미네랄 오일이 절연물질로 널리 사용될 수 있게 해준다. 또 전열에는 고형의 절연물질과 함께 사용되어 절연유가 가지고 있는 단점들이 보완될 수 있다.

Major Insulation에 포함되는 것은 얇은 나무로 이루어진 pressboard (wood-based paperboard)의 격막이며 이 격막은 오일의 공간의 따라 변한다.



Oil Transformer Press Board

(Image: https://www.indiamart.com/proddetail/oil-transformer-press-board-19077217373.html)

오일의 유전율은 2.2이며 고체 형태의 유전율은 보통 4.0 정도에 해당하기 때문에 오일에서의 유전 응력(dielectric stress)는 pressboard의 유전 응력보다 더 높고 디자인 구조는 보통 호일 안의 응력에 의해 제한된다.

트랜스포머에 감겨있는 전도체의 절연은 에나멜이나 특수종이 (나무 또는 나일론 베이스)가 될 수 있다. 전도체에 직접적으로 사용하는 절연은 호일 안에 있는 잠재적으로 유해한 streamer를 억제하며 구조의 강도를 증가시킬 수 있다. 다시 말하자면, 유전 응력(dielectric strength)의 제한은 보통 오일의 유전 응력이다.

Heavy paper winding 은 보통 winding으로부터 오는 leads에 사용된다. 이 경우에는, 도체의 표면(높은 응력)부터 멀리(상대적으로 낮은 응력)까지 접점을 이동시킴으로써 오일에서 절연은 응력을 줄이는 역할을 한다. 다시 언급하자면, 오일 안에서의 응력은 사용될 절연 페이퍼의 양을 결정하며 열과 관련돼서 필수 절연을 위한 최소한의 전도체 사이즈를 설정한다.

C) Askeral-Insulated Transformers

(Askeral: 합성, 내화성, 염소처리된 탄화수소 그룹의 일종으로 절연 유체로 사용되었음)

이 형태의 트랜스포머는 절연유 트랜스포머 (oil-insulated transformer)와 유사한 구조를 공유한다. 상대적으로 유전율이 높은 askeral 물질은 유전 응력을 고체물질로 전달하는 것을 용이하게 한다.

Askeral 물질은 과도한 유전 응력으로부터 회복력에 있어서 제한된 능력을 보유하기 때문에 균일하지 못한 절연내력 (dielectric field)에서는 절연강도가 제한될 수밖에 없다. Askeral 물질은 대게 3.4kV 이상의 동작 전압에서는 잘 사용되지 않는다.

Askeral은 매우 잘 용해되는 용제 (solvent)이기 때문에 물질에 부패가 일어나게 되면 환경이나 인체에 매우 해롭기 때문에 1970년대 중반 이후로 이 트랜스포머의 제조를 완전히 멈추었다.

D) Fluorogas-Insulated Transformers

(플루오르화 가스 절연 트랜스포머)

플루오르화 된 가스들은 대게 질소나 공기에 비하여 더 강한 절연내력을 보유하고 있다. 비록 플루오르화 된 가스들의 열전도 특성이 오일에 비해 떨어지더라도, 질소나 공기보다는 더 좋다 (플루오르화 된 가스들은 질소나 공기에 비해 밀도가 높다).

어떤 물질의 절연내력이나 열전도 능력은 압력이 과 함께 증가한다. 예를 들면, 플루오르화 가스 절연 트랜스포머에 3 atm gage 압력을 가하면 오일이 가지고 있는 유전 응력(dielectric stress)의 수치만큼 접근할 수 있다. 그리고 이러한 gas를 활용한 절연은 고체 형질의 절연체들(barrier, layer, disk insulation, turn insulation, lead insulation)과 함께 사용되면서 절연 능력이 보강될 수 있다. 다시 말하면, 절연유로 트랜스포머의 절연 기술을 적용하는 것과 비슷하다고 이야기할 수 있다.

Fluorogas-insulated transformer의 장점은 높은 온도에서 절연유 트랜스포머보다 경제적이라는 점이다. 그리고 앞서 언급한 바와 같이 고형의 절연물질과 함께 사용이 가능하다고 하였는데, 다시 말하면 플루오르화 절연 가스는 고형체의 절연물질에 적합하다는 점인다. 여기에 해당하는 고형의 물질들은 glass, asbestos(석면), mica (운모), 고온의 수지(resins), ceramic (세라믹) 등이 포함된다. 플루오르화 된 절연 가스들은 인접해있는 고 형체의 절연체의 비해서 몇 배는 더 높은 유전 응력(dielectric stress)을 가지게 된다.

E) Nitrogen and Air-Insulated Transformers

질소와 공기로 절연된 트랜스포머는 보통 34.5kV 또는 그보다 낮은 동작 전압으로 제한되어 있다. 공기로 절연된 트랜스포머는 청정지역에 종종 위치되어 있으며 대기로 통풍시킨다. 하지만 오염지역에서는 봉인된(sealed) 건설이 요구되며, 질소는 보통 1 atm의 압력과 조금 상승된 동작 온도에서 사용된다.

출처:https://www.electricityforum.com/td/utility-transformers/transformer-insulation


기본적으로 파워시스템의 구성요소는 Generation (전력 생산), Transmission(전송), 그리고 Distribution (배전)으로 구성된다. 이번 부분에서는 Transmission 과 Distribution 시스템에 관해서 이야기해보려 한다.

● Transmission and Sub-Transmission Systems

Transmission 과 Sub-transmission (하위 전송)은 메시 구조(Mesh)의 네트워크이기 때문에 한 포인트에서 다른포인트로의 여러 이동 경로가 존재하게 된다. 이렇게 여러 경로가 존재하는 궁극적인 이유는 Transmission 구조의 안정성을 증가시키기 위함이다.

기본적으로 Transmission 네트워크의 주 목적은 전력 생산 지점으로부터 load point (전력 소비 지점)까지의 고전압 전력 송신을 목적으로 하지만 sub-transmission은 transmission과 반대로 저전압 전력의 단거리 송신을 주요 목적으로 한다. Transmission 네트워크는 132~765kV 그리고 sub-transmission은 주로 34~132 kV의 범위의 해당된다.

그리고 이러한 transmission, sub-transmission은 다음과 같이 구성되어 있다.

1. 절연 와이어 또는 절연 케이블

2. 변압기 (전압 레벨을 바꿈)

3. 보호장치 (ex: 서킷 브레이커, 릴레이, 각종 정보 통신 시스템)

4. 트랜스미션 타워나 변전소 같은 물리적 장소.




● Distribution System (배전 시스템)

Distribution system은 대게 sub-transmission의 하위 레벨의 속한다. Distribution system은 대략적으로 다음과 같이 구성된다.

1. 1차 Distribution 라인 또는 공급장치

2. Distribution 변압기

3. 2차 Distribution 회로

4. 소비자와의 연결 및 미터기

변전소는 변압기를 포함하고 있으며 변압기를 통해 sub-transmission부터 distribution 레벨까지의 전압을 변화시킨다 (전압 감소). Distribution 전압은 보통 4~34kV에 해당하며 각 변전소에 존재하는 변압기는 최소 하나 혹은 그 이상의 공급장치를 운용하게 된다.

1차 distribution system은 distribution 변전소부터 distribution 변압기까지 확장되어 있으며 가장 뚜렷한 특징은 주요 공급장치와 측면의 공급장치에서 두드러진다. 주요 공급장치는 변전소와 측면 공급장치는 주요 공급장치와 연결되어있다.



각각의 공급장치는 쇼트서킷 전류로 인한 손상을 방지하기 위해서 서킷 브레이커 (Circuit breaker)나 리클로저(Re-closure) 같은 보호장치들이 설치되어있다. 주요 공급장치는 전력 전달 또는 공급장치의 통제 및 보호를 위해 대게 지하 케이블 또는 오버헤드라인으로 구성되어있다. 이러한 보호장비의 예로는 스위치, 카파 시터, 퓨즈, 전압 조절장치, sectionalizer, 링클 로저, step-down 분배 변압기.

많은 변압기들은 주요 공급장치와 연결되어 있으며 주요 목적은 전압 레벨을 소비자가 사용 가능한 레벨 (120, 208, 또는 240V) 낮추는 것이다. 분배 전압기는 대게 2차 distribution system에 공급된다.

추가적으로 전력 소비의 사이즈에 따라서, 소비자의 전력 시스템은 transmission system, sub-transmission system, 1차 distribution system, 또는 2차 distribution system에 배정되어 연결된다.

출처: http://electricalacademia.com/electric-power/electrical-power-system-components/


HVDC (High-Voltage direct current) 즉, 고 직류전압은 HVAC 시스템에 비해서 많은 양의 전력을 장거리로 전달할 때 매우 효율성이 좋다. 현재의 파워시스템이 재생에너지와 관련된 사업들이 점점 증가하고 있으며 HVDC system은 이러한 재생에너지 활용에 있어서 매우 좋은 대안이 될 수 있다. Ultra high voltage technology, 즉 초고 전압 기술은 HVDC가 진화한 시스템으로 HVDC system보다 더 많은 양의 전력 전달의 용이하며 전력손실도 매우 적은 편이다. 그리고 장거리 전력 전달에 매우 강점을 보임으로 해상에 설치된 풍력 발전기 같은 매우 먼 거리의 전력 전달에도 강점을 보인다. 현재 ABB라는 Power system 회사는 1,100 kV converter transformer 테스트를 완료한 상황이며 이것은 현재까지 가장 높은 직류전압으로 기록되어있다.


장거리 전력 송신을 고려하였을 때 HVDC 기술은 HVAC에 비하여 경제적, 환경적으로 이점을 가지고 올 수 있는데 그 이유 중 하나는 HVDC 시스템은 기존의 설치된 HVAC 시스템과의 연결이 가능하기 때문에 새로운 파워시스템의 건설이 필요 없으며 HVDC 시스템의 연결을 통해 기존의 파워시스템의 효율성을 높일 수 있다. 결론적으로, 새로운 파워시스템의 건축하지 않음으로써 환경적인 피해를 줄일 수 있고, 경제적인 이익 또한 기대할 수 있다.




출처

1. https://new.abb.com/products/transformers/power/hvdc-converter

2. http://search.abb.com/library/Download.aspx?DocumentID=9AKK106930A1474&LanguageCode=en&DocumentPartId=&Action=Launch

부분 방전(Partial Discharge: PD)이란?

두 전도체 사이에 발생하는 불완전한 절연파괴이며 대게의 부분방전은 3.3kV(phase to phase) 또는 그 이상의 전압에서 발생된다. 그리고 부분방전이 발생하는 장소는 Power 케이블, stator windings, 트랜스포머, 스위치기어등이 있다.


이름에서 보여지듯이 부분방전이란 부분적으로 일어나는 방전현상을 말하며 고 전압이 적용되었을때 부분적으로 절연체과 전도체사이를 전기적으로 잇는 현상을 말한다. 보통 부분 방전(partial discharge)의 현상은 부분적인 전기적 스트레스(electrical stress)의 집중으로 인해 발생하며, 절연체의 수명을 단축 시켜버리지만 즉각적인 시스템의 실패나 절연파괴는 일으키지 않는다.


  • 내부적 방전(Internal Discharge): 고형이나 액체의 절연체 내부의 작은 기포나 공간(cavities)에 의해 발생

  • 표면 방전(Surface Discharge): 고체 절연체 표면에서 발생하는 방전현상 (고체-고체, 고체-액체 포함)

  • 코로나 방전(Corona Discharge): Corona 부분방전을 들 수 있다. Corona 부분방전은 보통 도체의 표면에서 발생하며 그 결과로, 매우 강도가 높고 불균형한 전기응력(electric stress)을 발생시킨다.


고체의 절연체에서, 가스(gas)나 공기(air)로 체워져있는 작은 기포(cavity)는 절연기술 측면에서 좋지 않은것로 여겨지는데 크게 두가지 이유가 존재한다.

첫째로는, 공기의 절연 강도는 고체의 절연 강도에 비해 낮은 편이다. 다시 말하면 순수 절연 물질의 최대 전계 강도 값이 더 높기 때문에 절연 실패로 이어질 확율이 상대적으로 더 낮다.

두번째로는, 기포(cavity)는 주변의 절연체의 비해서 상대적으로 낮은 전기적 유전율을 갖게 된다. 따라서, 기포 주변의 전계(electric field)는 주변 절연체에 비해 더 보강된 값을 가지게 된다. (아래는 이와 관련된 대전되지 않은 상태에서의 수식이다)

위의 수식에서 보여지듯이 기포 주변의 전계는 factor >1 상태로 인해 증가하게 된다. 이러한 방식은 결국 부분적인 전계의 보강으로 이루어 지며 가스로 채워진 기포내에서 방전에 필요한 전계의 초과를 야기할 수 있다. (전자 사태를 유발할 수 있음)

부분방전은 이온화 과정으로 인해 일어나게 되며 이러한 이온화 과정의 발생을 위해서는 다음의 두 조건을 반드시 충족시켜야 한다.

1. 기포내의 부분적 전계의 강도는 반드시 최소 파괴 전압에 상응하는 특정 전계값을 초과해야 한다.

2. 두번째로는, 기포 내부의 가스에서 자유 전자는 이온화 과정의 시작을 위해 반드시 존재 하여야 한다.




이온화 과정과 관련된 전자사태(electron avalanche)는 기포 표면에 자유 전자의 배치를 이끌어 내게 되며 결론적으로, 전하들은 전계의 방향과 나란히하며 기포의 표면으로 이동하게 된다.

이러한 전하들은 기포의 표면에 갇히게 되고 결국 적용된 전계의 반대방향으로 또 다른 전계를 형성시킨다.

이 현상은 매우 짧은 순간(microseconds 단위)로 발생하게 된다. 그 결과 기포 주변(cavity)의 총 전계(the total electric field)는 급격하게 감소하게 되고 방전의 소멸로 이끌게 된다.

이러한 과정 뒤에, 같힌 전하(trapped charge)들은 (+) 과 (-)의 전하들의 재결합 과정을 통해 소멸되게 된다. 그리고 일정 시간이 지난 후 전계는 다시 새로운 방전이 시작할 만큼 충분히 강해지게 된다.

● PD는 두 도체사이의 가스(air, SF6, hydrogen) 가 존재할때만 발생된다.

● 두 도체사이에 고압이 적용되었을때 electric stress를 만들게 된다.

● 만약 가스가 존재하는 공간에서, electric stress 가 3kV/mm을 초과하였을때 전자들이 가스 원자로부터 떨어져 나오기 시작한다.

보통의 액체 또는 고체의 절연체들은 가스에 비해 50~100배의 더 큰 전기적 강도를 가지게 된다.

음극성 전자들(negative electrons)은 공기를 통해 양극성을 띈 도체로 이동하려는 성질을 보이게 되며, 절연체의 손상을 주게한다.

시간과 공간을 이동하는 전자들은 전류를 발생시키며 식은 i=dq/dt이다.


출처:

[1] Greg Ston (Iris Power – Qualitrol): Partial Discharge in Electrical Insulation

[2] https://www.quora.com/Whats-PD-partial-discharge

+ Recent posts