전기 에너지의 송전과 배전 네트워크는 파워 트랜스포머, 스위치기어, 과 전압 어레스터(overvoltage arrestors), 절연체, 파워 케이블, 트랜스포머등의 고 전압관련 장비들이 포함된다. 그리고 이러한 고 전압 장비들은 내부와 외부의 과 전압으로 인해 순간적으로 매우 높은 전압이나 전류에 노출되게 된다. 고 전압에서 사용되는 충격 전압은 저 전압 (low voltage system)에서 사용되는 충격 전압의 개념과 다소 차이점을 보인다. 고 전압에서 사용되는 충격 전압과 충격전류는 고 전압 충격의 생산과 측정동안 발생하는 특수한 경우를 설명하기 위해 도입된다. 


간략하게 이와 관련된 용어들을 정리 해보려 한다.


1. 뇌 충격전압(Lightning Impulse Voltages)


외부의 과전압에 의해서 고 전압 장비에 전기적 강도가 전해 질 수 있는데 이러한 원인중 하나는 벼락 또는 뢰전(lightning strokes)에 의해 나타난다. 그리고 이러한 뇌 충격전압은 full lightning impulse voltage, 와 chopped lightning impulse voltage로 구분된다.


2. 개폐 충격전압(Switching Impulse Voltage)


이름 그대로 스위칭 동작으로 인해 발생하는 충격 전압이다. 스위치의 동작으로 인해 고 전압 장비 내부에 과 전압이 흘러 들게 되고 이로 인해 이러한 고 전압 장비들은 강한 스트레스(응력)에 노출되게 된다.


3. 지수형태의 충격 전류(Exponential Impulse Currents)


지수형태의 충격 전류는 상대적으로 매우 빠른 형태이며 지수함수 형태로 peak value까지 빠르게 도달한뒤 상대적으로 느린 속도로 0의 값으로 내려 오게 된다.

4. 사각 충격 전류(Rectangular Impulse Currents)


이름 그대로 사각형 형태의 충격전류를 보여주기 때문에 장시간 충격전류라고도 불린다.


충격 전압 테스트를 위한 전압 생성기


충격 전류 테스트를 위한 전류 생성기



출처: K. Schon, High Impulse Voltage and Current Measurement Techniques. 2013.





HVDC Converter Transformer


HVDC 마켓의 지속적인 성장은 HVDC 송전 시스템의 있어서 전압과 송전 용량을 꾸준히 증가 시킬수 있게 하였다. 현재 HVDC converter transformer 800kV의 전압 레벨까지 도달하였으나, Siemens(지멘스) 회사는 1100kV 그리고 587MW 수준의 트랜스포머를 제작하여 중국 1100KV HVDC 프로젝트에 참여했다.


Converter transformer는 삼상(three-phase) AC 네트워크와 converter 벨브(vavles)를 연결한다. Converter transformer는 HVDC 시스템에서 매우 중요한 부분을 담당하고 있으며 이것이 가지고 있는 기능은 다음과 같다.


  • AC 네트워크와 converter valves 사이의 전력의 전달

  • 전압 전환에 있어서의 전압 레벨 보조

  • AC 와 DC 시스템 사이의 전류적 독립성

  • 폴트(fault) 전류를 최소화 하기위한 short-circuit current 임피던스의 공급

ABB converter transformer(https://new.abb.com/products/transformers/power/hvdc-converter)


Converter Transformer 의 구성요소


A) 코어와 와인딩(Core and Winding)

(https://sari-energy.org/oldsite/PageFiles/What_We_Do/activities/HVDC_Training/Presentations/Day_3/1.Converter_Transformer.pdf)


Converter Transformer의 동작원리는 자속 (magnetic flux)를 기반으로 한다. 코어 타입은 steel로 라미네이트 되어 있으며 converter transformer에 현재 널리 사용된다. 위의 그림은 전형적인 코어와 와인딩 구조 (single-phase three winding 컨버터 트랜스포머)를 보여 주고 있다. 벨브 와인딩(Valve winding)은 코어에 가장 가까우며 라인 와인딩(line winding)으로 둘러 쌓여 있으며 바깥 쪽 레이어는 탭 와인딩(tap winding)으로 구성된다. 왼쪽 편의 벨브 와인딩은 Y connection (the upper bridge 용) 이며 오른쪽 벨브 와인딩은 Delta connection(the lower bridge 용) 으로 이루어진다. 컨버터 트랜스포머의 전형적인 절연 물질은 오일과 섬유소 절연체가 많이 사용된다. 


전도체들은 turn사이에서 절연을 위해 섬유소 종이로 감겨 있으며, 섬유소 보드(board)는 기계적인 서포트 뿐만 아니라 절연 능력의 향상을위해 배치된다. 섬유소 절연과 함께 있는 전체적인 와인딩은 절연유(insulating oil)에 담가지게 된다. 그 이유는 고 전압의 대한 절연 뿐만아니라 트랜스포머 내부에서 발생되는 열을 자연스레 또는 강제로 발산시키기 위함이다.


B) 부싱(Bushing)


부싱은 컨버터 트랜스포머 위쪽에 확연히 눈에 띄게 자리잡고 있으며, 큰 전력의 이동에 관여한다. 라인쪽(line side)의 부싱은 AC 기술을 기반으로 디자인 되어있으며 반면에 HVDC 부싱은 Valve 사이드 쪽에 항상 존재하며, LCC-HVDC 기술의 핵심적인 역할을 하게 된다. 현재, Oil-impregnated paper 와 resin-impregnated paper의 기술이 주로 HVDC 부싱에 적용된다. 


C) 쿨링 시스템(Cooling System)


컨버터 트랜스포머의 쿨링 시스템은 보통의 큰 규모 트랜스포머(오일 덕트, 파이프, 라디에이터로 구성된)의 쿨링 시스템과 유사하다.


D) 오일 탱크(Oil Tank)


접지된 오일탱크는 컨버터 트랜스포머의 내부 고전압 요소들을 커버한다. 


위의 열거된 요소들을 이외에, 탭 차저(tap charger), 모니터링 시스템, 보호 장비들이 컨버터 트랜스포머 구성에 포함된다.



컨버터 트랜스포머의 구조(Configuration of Converter Transformers)


정격 전력(power rating)과 운송 제한(transportation limitation)에 따라서 컨버터 트랜스포머는 4가지의 구조로 나누어 질 수 있다.

컨버터 벨브(valves)로 전력을 전달하기 위해서는, 컨버터 트랜스포머는 three phase 그리고 에 관한 더블 valve 와이딩을 포함한 단일 유닛부터 sing phase와 single valve 를 포함한 6개의 분리된 유닛까지의 범위까지 설정될 수 있다. 일반적으로, 더 큰 규모의 HVDC 프로젝트는 더 큰 규모의 정격전압(Power Rating)을 필요로 한다. 그리고, 이러한 큰 규모의 HVDC 프로젝트는 더 많은 분리된 컨버터 트랜스포머를 필요로 하게 된다.



컨버터 트랜스포머의 절연 (Insulation in Converter Transformer)


컨버터 벨브의 연결로 인해서, DC 스트레스는 컨버터 트랜스포머의 벨브 와인딩으로 유입되게 된다. ABB리포트에 따르면 upper bridge에 연결되는 컨버터 트랜스포머 벨브와인딩의 DC 요소들은 HVDC 전압 레벨의 3/4에 해당하게 되고 lower converter transformer의 벨브와인딩에는 1/4의 HVDC 전압레벨이 해당하게 된다. 주어진 주파수의 AC stress 에서는, 전계의 분배는 절연 물질의 유전율(permittivity)에 의해 결정된다.


오일이나 종이의 유전율(permittivity)의 변화는 크게 잘 일어나지 않는다. 그리고 주어진 주파수에서 오일과 종이사이의 유전율의 차이또한 그렇게 크지 않다.(오일: 2.2/oil-impregnated kraft paper: 3.5). 그러므로, AC 트랜스포머에서 전계의 분배는 매우 잘 예측되며 컨틀롤 하기도 용이하다.


DC stress에 관련해서는 전계의 분해(the field distribution)은 저항력(resistivity)에 의존하게 된다. 저항력(resistivity)의 값은 내부 또는 외부의 상황 즉, 온도, 습도, 노쇠화에 관련해서 매우 민감하다. 결론적으로, DC 응력이 절연시스템에 유입되게 되면, 전계 분배는 불균형해지며 컨트롤 하기 어려워진다. 이러한 현상은, 컨버터 트랜스포머의 단점으로써 계속해서 극복되어야 할 부분이다. 또한 이러한 DC stress가 주는 현상은 절연체에서의 공간전하 축적으로 이어질 수 있다. 







출처: 

[1]https://sari-energy.org/oldsite/PageFiles/What_We_Do/activities/HVDC_Training/Presentations/Day_3/1.Converter_Transformer.pdf

[2]A. Carlson, “Specific Requirements on Hvdc Converter Transformers.Pdf,” Ludvika, Sweden.

약 100년전 "war of currents"라는 AC와 DC 파워 시스템이 앞으로의 전력 보급방식을 두고 전쟁 아닌 전쟁을 벌인적이 있었다(DC: 토마스 에디슨 vs AC: 니콜라 테슬라). 결국 AC 시스템의 승리로 끝나게 되고 이 방식은 현재 대분의 전력 공급 시스템으로 자리 잡게 되었다. 하지만, 기술의 발전, 특히 반도체의 급격한 성장으로 인해 고 전압(High Voltage) , 특히 직류 고 전압(HVDC)의 이용이 가능하게 되었으며 이미 많은 나라에서 상용화에 돌입했다. 


AC 시스템의 비해서 DC 시스템이 가지는 장점들은 다음과 같다.


  • 장거리 송신에 있어서 전력 손실이 적다.

AC 시스템의 비해서 송전 라인의 수가 적은편이다(HVDC 시스템에서는 오직 두개의 송전 라인만을 필요로 한다). 또한 리엑티브(reactive) 전류와 스킨 효과(skin effect)가 존재하지 않음으로 전력손실이 상대적으로 적다.


  • 장거리 송신에 있어서 비용이 AC 시스템의 비해서 저렴하다.

AC 시스템의 비해서 변전소 건설비용은 비싼편이지만, 그래도 송전탑의 폭이 좁은 편이며 500~800km 이상의 거리를 송전할때는 오히려 HVDC 시스템이 HVAC 시스템보다 비용이 저렴한 편이다.


        AC vs DC 비용 비교

(https://www.quora.com/Up-to-what-distance-is-DC-transmission-efficient)


  • 안정성이나 동기화관련 문제가 없다.

우선 DC 시스템은 Phase angle (위상)이 존재 하지 않기 때문에 매우 안정적이며 그리고 서로 다른 주파수를 가지는 두 AC 시스템 사이를 연결함에 있어서도 문제가 없다.


  • 더 큰 용량의 short-circuit capacity

두개의 AC 시스템이 AC 방식으로 연결이 된다면 short circuit capacity 는 증가하게 되고 추가적인 설비의 업그레이드가 필요하게 된다. (e.g. 서킷브레이커). 하지만, DC 링크는 기존의 AC 시스템의 변화 없이 바로 연결이 가능하기 때문에 추가 업그레이드가 필요 없다.


현재 HVDC 시스템이 제공하는 서비스는 LCC-HVDC(Line-commutated HVDC)와 VSC-HVDC(Voltage-source Converter HVDC) 두개의 시스템이다. LCC HVDC 시스템은 장거리 대용량의 전력 송전을 위해 사용되며 VSC-HVDC시스템은 off-shore(해안가) 에서 발생하는 풍력 또는 외곽 지역과 관련되서 사용된다.




+ Recent posts