고전압 절연 시스템에서 공간전하 축적의 효과(The Effect of Space Charge Accumulation in High Voltage Insulation Systems )


HVDC(High Voltage Direct-current)는 현재 배전시스템에 있어서 매우 중요한 주제이다. 특히, 경제적 그리고 환경적 요인이 많이 작용하며 현재 AC 시스템에 의해 운용되는 장거리 송전시스템을 DC시스템으로 대체하기 위해서 HVDC의 연구는 지속적으로 필요하다. DC 전원은 AC 전원의 경우보다 절연 물질이 다르게 대전(charged)되게 된다. 이러한 이유로, 절연체의 대전(charging)을 분석하기 위해 특별한 측정방법을 사용하여야 한다(e.g. 공간전하 측정, 부분방전 측정 등). 


만약 전계(electric field)가 절연물체와 상호작용관계에 있다면, 분극화(polarization) 매커니즘이 시작되게 된다. 구속 대전 캐리어(bound charge carriers: fast polarization, relaxing polarization)과 자유 대전 캐리어(free charge carrier: migration polarization, space charge polarization)들은 이러한 매커니즘에 기여될 수 있다.


A) 절연체에서의 전자와 이온의 이동(Migration of Electrons and Ions in Dielectrics)


바운드 그리고 자유 전하(bound and free charge) 모두 분극화 (polarization)과정에 기여한다. 공간전하의 분배는 자유 전하의 흐름 또는 갇힌 전하(trapped charge, 갇히기 전에는 자유상태)에 의해 영향을 받을 수 있다. 자유 대전 캐리어는 갇힌 전하의 비해서 절연체를 대전시킴에 기여하는 바가 상대적으로 훨씩 적다. 그리고 갇힌 전자는 절연 재료 내부에 존재하게 된다. 그리고 대전캐리어들(electron, holes, ions)은 다른 방식으로 재료에 주입이 될 수 있다. 대부분의 경우들은 캐소드쪽에서의 주입 또는 애노드로 부터의 추출(전공 인젝션)들이 이에 해당한다. 또한 이러한 상황들은 쇼트키 효과를 통해 설명될 수 있다(Schottky effect). 대전 캐리어들은 절연체나 전극의 사이의 potential barrier를 극복하게 된다. 공간전하의 분배는 적용된 전압에 극성에 의지 할 뿐만 아니라, 전극의 재료, 절연체의 내부구조에도 의지하게 된다. 대전 캐리어의 주입의 관한 다음 선택지는 열 방출이나 절연체 내부 기포에서 발생하는 부분방전에 의한 주입이 있다. 분극 이동의 효과는 또한  ε’ (-)/f (Hz) 특성(Figure 1)에 의해 확인 될 수 있다(절연체 분광학 이용: the dielectric spectroscopy).


B) 절연체에서의 공간전하(Space Charge Profiles in Dielectrics)


전기적 절연체에서 공간전하는 3가지로 분류 될 수 있다(homo-space charge/hetero-space charge/internal-space charge).


  • 비균일 공간전하(Hetero-space charge): (+)공간전하라고도 불리며 종종 고형 절연체에서 발생한다. 대부분의 경우들이 내부 구조에서 전하와 결합한 경우 이다. 이러한 현상은 캐소드에서 방출하는 전자에 비해 훨씬 더 이동성이 좋은 전자에 의해 유발된다. 그 결과, (+)극성의 전하가 캐소드쪽에 축적되는 현상이 벌어지게 된다. 이런 종류의 공간 전하는 폴리에틸렌(PE:polyethylene) 같은 중합체(고분자자) 또는 polyethylene terephthalate(PET), polyethylene naphthalate (PEN) 같은 물질에서 일어난다.

  • 균일 공간전하(Homo-space charge): (-) 공간 전하라고도 불리며, 캐소드로 부터의 빠른 전자 주입으로 인해 발생한다. 이러한 주입은 절연체 내부와 같은 극성의 전극 주변에서 전하 캐리어의 양을 증가시키며 XLPE(cross-linked polyethylene)같은 물질에서 일어나게 된다. 

  • 내부 구조의 공간전하(Space charge in inner structure):  크리스탈 래티스 구조의 결함에서 갇힌 전하(trapping of charge)에 의해 발생할 수 있다. 또한 무정형 (amorphous), 다결정질(polycrystalline) 재료안의 트랩에서도 발생 한다. 



C) 공간전하 측정 원리(Space Charge Measurement Principles)


절연체 내부에서의 공간전하의 특성을 조사하기 위해 몇 가지 모니터링 방법이 사용된다. 초기에는 이를 측정하기 위해 절연체를 얇은 면으로 절단하였다. 하지만, 현재의 측정 기술을 양적인 측면에서 훨씬 더 발전되었드며, 가장 널리 쓰이는 방식은 다음과 같다.


  • LIPP: laser-induced pressure pulse

  • PWP: pulse pressure wave

  • TP: thermal pulse

  • PEA: pulsed electroacoustic


공간전하 축적의 효과는 전계 분배 강도 E (kV/mm), 에너지 밀도 ηE (J/m^3),  분극화 polarization p (C/m^3)로 나타내어 진다.


장 시간의 HVDC 사용은 절연체를 대전(charging) 시키며, 또한 절연체 내부구조에서 공간 전하를 형성한다. 이러한 공간전하의 축적은 전계의 분배(the distribution of electric field)에 영향을 미칠 뿐만 아니라, 분극화나 에너지 밀도에도 영향을 끼치게 된다.

비균일 공간전하 프로필(hetero- space charge profile)로부터 절연체의 노쇠화가 더 크게 영향을 받으며 즉, 전극 주변의 전계의 강도가 증가하는 현상을 보이게 된다.  

출처: J. Hornak, P. Trnka, P. Totzauer, and M. Gutten, “The effect of space charge accumulation in high voltage insulation systems,” Proc. 2017 18th Int. Sci. Conf. Electr. Power Eng. EPE 2017, pp. 1–5, 2017.




약 100년전 "war of currents"라는 AC와 DC 파워 시스템이 앞으로의 전력 보급방식을 두고 전쟁 아닌 전쟁을 벌인적이 있었다(DC: 토마스 에디슨 vs AC: 니콜라 테슬라). 결국 AC 시스템의 승리로 끝나게 되고 이 방식은 현재 대분의 전력 공급 시스템으로 자리 잡게 되었다. 하지만, 기술의 발전, 특히 반도체의 급격한 성장으로 인해 고 전압(High Voltage) , 특히 직류 고 전압(HVDC)의 이용이 가능하게 되었으며 이미 많은 나라에서 상용화에 돌입했다. 


AC 시스템의 비해서 DC 시스템이 가지는 장점들은 다음과 같다.


  • 장거리 송신에 있어서 전력 손실이 적다.

AC 시스템의 비해서 송전 라인의 수가 적은편이다(HVDC 시스템에서는 오직 두개의 송전 라인만을 필요로 한다). 또한 리엑티브(reactive) 전류와 스킨 효과(skin effect)가 존재하지 않음으로 전력손실이 상대적으로 적다.


  • 장거리 송신에 있어서 비용이 AC 시스템의 비해서 저렴하다.

AC 시스템의 비해서 변전소 건설비용은 비싼편이지만, 그래도 송전탑의 폭이 좁은 편이며 500~800km 이상의 거리를 송전할때는 오히려 HVDC 시스템이 HVAC 시스템보다 비용이 저렴한 편이다.


        AC vs DC 비용 비교

(https://www.quora.com/Up-to-what-distance-is-DC-transmission-efficient)


  • 안정성이나 동기화관련 문제가 없다.

우선 DC 시스템은 Phase angle (위상)이 존재 하지 않기 때문에 매우 안정적이며 그리고 서로 다른 주파수를 가지는 두 AC 시스템 사이를 연결함에 있어서도 문제가 없다.


  • 더 큰 용량의 short-circuit capacity

두개의 AC 시스템이 AC 방식으로 연결이 된다면 short circuit capacity 는 증가하게 되고 추가적인 설비의 업그레이드가 필요하게 된다. (e.g. 서킷브레이커). 하지만, DC 링크는 기존의 AC 시스템의 변화 없이 바로 연결이 가능하기 때문에 추가 업그레이드가 필요 없다.


현재 HVDC 시스템이 제공하는 서비스는 LCC-HVDC(Line-commutated HVDC)와 VSC-HVDC(Voltage-source Converter HVDC) 두개의 시스템이다. LCC HVDC 시스템은 장거리 대용량의 전력 송전을 위해 사용되며 VSC-HVDC시스템은 off-shore(해안가) 에서 발생하는 풍력 또는 외곽 지역과 관련되서 사용된다.




+ Recent posts