Simulation of Pulsed Electro Acoustic Method of Space Charge Measurement


Abstract


공간전하의 측정을 위한 PEA(Pulsed Electro Acoustic) 측정방식의 높은 활용도에도 불구하고, 장비의 디자인과 신호의 회수(retrieval)와 관련된 몇몇의 문제들은 아직 해결해야할 과제들로 남아있다. 이 페이퍼는 시뮬레이션을 위해 PEA 방법이 사용된 physical model과 고 전압(High Voltage)의 펄스소스(pulse source)로 구성되었다.


Introduction


더 경제적 그리고 효율적으로 전력을 전달하는 방법은 고 전압 레벨(higher voltage level)을 이용하여 송전하는 방법이다. 하지만 이러한 방법은 전력 장비에 추가적은 응력(stress)를 작용시켜 거의 전압파괴 강도까지 끌고 간다. 이러한 강한 전기적 응력의 작용에서는, 공간전하(space charge)는 몇몇의 절연 물질에서 형성됨이 발견 되었으며, 이러한 절연체의 예로는, Polyethylene (PE), Polypropylene (PP), Poly-methyl-methacrylate (PMMA) 이다. 이러한 전하(charge)들은 절연체의 전기적 특성에 영향을 미칠 뿐만아니라, 절연체의 손실을 갖가져올 수 있다. 절연 강도의 활용성을 완전히 향상시키기 위해서는, 공간전하(space charge)의 행동을 반드시 이해하여야 한다.


1970년대 까지는 다양한 destructive(파괴적) 방법이 공간전하의 측정을 위해 사용 되어왔지만 1980년대에 들어서면서 여러 non-destructive (비-파괴적인) 방법들이 고안되게 되었다. 비 파과적인 방법인, Acoustics wave 카테고리에 해당하는 측정 방법은, Pressure Wave Propagation(PWP) 그리고 Pulsed electroacoustic method(PEA)가 이에 해당된다. 


Principle of PEA Method




Figure 1에서 보여 지듯이 고 전압 Vdc (항상 DC 전압일 필요는 없다)이 절연 샘플이 전류 제한 저항(a current limiting resistor, R)을 통해 적용되었다. 표면전하(space charge)와 관련해서,  interface(접촉지점)에서 σ(0) 과 σ(d)를 가지며 샘플에선서는 공간전하 ρ(z)가 형성된다.


캐패시터 C를 통해 샘플에 연결된 펄스 소스(pulse source, e(t))는 높은 펄스 전압 강도(<<Vdc)를 적용하기 위해 사용된다. 각 전하에서의 펄스의 행동으로 인해 전계(electric field)는 기존의 위치보다 약간 이동하는 현상을 겪게되며 acoustic wave를 생성하게 된다. 이러한 웨이브는 압전기 변환기( piezoelectric transducer)에 의해 감지되고 전기적 신호로 바뀌게 된다. 또한 이러한 전기적 신호는 화면에 나타내기 위해 증폭기로 증폭 시킨다. 이러한 전기적 신호는 절연체의 공간전하관련 정보를 포함하며, 디콘볼루션(deconvolution)과정을 통해 원래의 전하 시그널을 얻게 된다.


Modelling and Simulation



Pulse Source: 고 전압과 매우 짧은 시간동안(nano seconds)의 펄스 소스는 샘플로부터 측정 가능한 신호를 얻기위해 적용 되어져야 한다. 이 페이퍼에서, 펄스 e(t)=0~600V (4ns) 가 고려 된다. 펄스 소스를 샘플에 연결하기 위해서는, 40Ω의 임피던스를 가진 동축 케이블이 사용된다. 케이블의 마감은 후에 3가지의 다른 형태의 마감을 가지게 된다.

그리고, 수신 끝 부분에서 펄스 전압은 그 어떤 반사도 겪지 않으며 부드럽게 샘플에 적용된다. 매우 높은 주파수를 가지는 펄스 전압의 요소들로 인해, 몇몇 옆길의 캐패시터들이 그룹을 지어 형성된다. 그러나, 옆길의 캐패시터 효과는 현재 연구에서 제외된다. 


High Voltage Source: 샘플에서의 공간전하의 측정을 위해서는, 대게는 고 전압(High Voltage)이 샘플에 적용된다. 연구에 따라서, HV source는 dc, ac, 또는 순간적인(transient) 형태가 될 수 있다. 이 페이퍼에서는, 양면을 다 이용할 수 있는 극성(reversible polarity)의 10kV의 dc source 가 사용되었다. HV(Vdc) source를 보호하기 위해서는, 전류 제한 저항(current limiting resistor)이 적용된다. 따라서 10MΩ 의 저항이 HV source와 함께 적용된다. 


Dielectric sample: 이 연구에 절연 샘플은은 연속적인 캐패시터와 저항들이 직렬과 병렬의 조합으로 연결되어있다. 여기서 절연체는 10mm의 지름과 200μm의 두께를 가진다고 가정했다. 이 주어진 값들을 통해 얻어지는 샘플의 캐패시터 값은 8.6924pF 와 2.546*10^15Ω 저항값을 가진다. (resistivity = 10^15 Ω and relative permittivity εr = 2.S for given sample)


Amplifier circuit: PEA 측정 방식에서 또 다른 중요한 요소는 증폭기(amplifier)이다. 이 연구 페이퍼에서는 증폭기가 모델링 되지는 않았지만 이 증폭기 부분은 다른 부분으로 부터 분리될 수 있기때문에 다른 장비에 영향을 미치지 않는다.


Figure 2에서는 PEA 모델이 셋업된 모습이 모여지며 모든 시뮬레이션은 26℃에서 실행 되었다. Transient 분석은 다른 형태의 시뮬레이션으로 수행되며 후에 다루어 질 것이다. 회로 모델에 따라서, transient 분석의 step size는 (0.1ns & 0.1ms) 변하게 된다.


Result and Discussion


Cable Termination


펄스 소스에 연결된 케이블의 끝부분이 coupling capacitor의 관해서 제대로 마무리되지 않으면, 회로에서 여러개의 반사작용을 일으킬 수 있다. 회로로 부터 반사작용을 제거하는 것은 매우 어렵지만, 정교하게 디자인된 회로는 반사작용을 무시할 수 있는 수준으로까지 줄여준다. Figure 3는 PEA 방식이 적용되어진 3가지의 서로 다른 케이블 마감형태를 보여주는데 이 3가지 방식 모두 임피던스(characteristic impedance)값에 매치되는 적절한 저항값이 적용되었다. 시뮬레이션에서 케이블은 5ns의 delay를 가진다. 이 3가지의 모든 회로에서는 펄스 소스(pulse source)는 케이블에 연결되며 이러한 연결은 저항값 R(케이블의 임피던스 값과 동일)을 통해 이루어진다. 하지만, R1, R2, 그리고 R3 (회로의 마감부분)은 다른 값을 가진다. 





Circuit 1
가장 심플한 케이블의 마감 형태이다. 펄스 전압이 t=0에서 적용된다면, 전압은 저항 R과 characteristic impedance 사이에서 분배되버린다. 결과적으로, node 2에 걸리는 전압 펄스는, node 1에 걸리는 값의 약 1/2 정도이다. 딜레이 5ns 정도 후에는 이 전압 펄스는 케이블의 끝 부분인 node 4에 도달하게 된다 (Figure 4).

Node 4의 마감 저항(terminating resistor)값은 characteristic impedance와 매치되었다. 하지만, 시그널을 무시할정도로 작은 전압 반사(reflection, few pV)를 5ns의 시간동안 얻는다. 이는 별로 중요하지 않는데, 이러한 현상은 캐패시터의 존재로 인해 완벽하게 매치하지 않아서 일어날 수 있기때문이다.

Circuit 2
Π의 형태로 R1, R2, R3가 사용되며 characteristic impedance의 값과 매치된다. Circuit 1에서 같은 강도의 펄스 전압은 유사한 방법으로 흐르게 된다. 반사 전압의 강도 pV는 이전의 케이스와 비슷하다.

Circuit 3
이 형태는 사다리 형식의 케이블 마감이다. 이러한 형태는 Circuit 1에 비해 적은 반사 전압을 가지며 Circuit 2에 비해서는 같거나 더 적은 반사 전압을 가지게 된다.

Effect of Polarity Reversals

극성의 뒤바뀜 현상은 DC transmission network에서 흔한 현상이며, 특히, 역 전압(reversing power)이 dc 베이스의 conventional thyristor에 흘러들어가게 될때 발생한다. 극성의 뒤바뀜 현상동안(Polarity reversal) 공간 전하의 재배치(space charge redistribution)이 일어나게 된다. 케이블에서의 절연파괴는 이러한 현상으로 인해 일어날 수 있다. 이러한 현상은 전극 뒤바뀜 현상동안 절연체에서 일어나는 전하 배치(charge distribution)의 행동의 이해를 필요로하게 한다.
절연 샘플은 극성 뒤바뀜으로 시작지점으로 부터 20ms에 놓여 있으며 극성 뒤바뀜 작용 기간은 1ms 이다. 
 


Figure 5는 이에관한 결과를 보여주며 시뮬레이션 기간동안 커플링 캐패시터의 값은 극성 뒤바뀜에 있어서 매우 중요한 역할을 하는것을 보여준다. 캐패시터의 값이 1nF 일때 시간 상수는 약 0.001 sec, 10nF 일때는 0.01sec, 1pF 일때는 0.000001 sec이다. Figure 5에서 확연하게 나타나듯이, 10nF의 캐패시터값을 가질때 상당한 delay 현상을 보이는 것을 알 수 있다.


극성 뒤바뀜동안 공간전하의 정확한 측정을 위해서는, 샘플 전압은 소스 전압(source voltage)라인에 있어야 한다. DC source voltage의 라인에 있는 샘플 전압에 관하여, 디자인 시간 상수는 최대한 작은 값을 가져야 하며 절대 극성 뒤바뀜 시간을 초과해서는 안된다. 이러한 현상은 극성 뒤바뀜동안의 전하 측정에 주목을 해야 한다는 것이다.


Sample Breakdown


공간 전하의 측정기간동안, 절연체 내부의 생기는 공간전하로 인해 절연파괴 현상이 일어날 가능성이 있다. 이러한 환경하에서는, 매우 큰 전압이 케이블이나 펄스 소스(the pulse source)에 아마 나타날 수 있으며 또한 펄스 소스에 손상을 가할 수 있다. 이러한 경우 적절한 케이블 마감의 선택은 펄스 소스와 다른 요소들 사이에 절연파괴 전압을 줄이는데 도움을 줄 수 있다. 샘플 절연파괴 현상은 쇼트된 회로 샘플에 의해 모방되되어지고, 전압을 사용하여 샘플에 연결된 스위치를 통제한다.


Figure 4에 있는 다른 회로의 node 4에서 얻어진 결과는 figure 6에 나타내어져있다. Circuit 1에서 node 4에서 나타나는 전압은 -4kV보다 약간 높으며, circuit 2에 관해서는 -1.44kV, circuit 3에 관하여 -3.14kV를 나타낸다. 따라서, 절연 파괴 전압의 효과를 줄이기 위해서는, circuit 2의 선택이 좋은 선택으로 여겨질 수 있다. 여기나 나타는 모든 전압들은 R1, R2, R3, 그리고 R4의 조합과 선택에 따라서 값이 변할 수 있다.


Conclusion


결론적으로 극성 뒤바뀜 현상동안, coupling capacitor의 값은 가능한한 최솟값을 가져야 샘플 terminal voltage 부터 supply voltage에서의 지연현상(delay)를 피할 수 있다.


샘플 절연 파괴현상 동안에는, 매우 큰 전압이 케이블과 펄스소스에 나타날 가능성이 있으며 이러한 가능성은 적절한 케이블 마감(cable termination)에 의해서 줄어들 수 있다.




출처


[1] J. S. Chahal and C. C. Reddy, “Simulation of pulsed electro acoustic method of space charge measurement,” Proc. IEEE Int. Conf. Prop. Appl. Dielectr. Mater., no. July 2012, 2012.









고 전압 기술에서의 구조적 특징(Structural details in high-voltage technology)


고 전압 장비를 디자인하고 건설하는 일에 있어서 전계(electric field)의 원리를 정확히 이해하는것이 매우 중요하다. 고전압 기술은 기계적 또는 열적인 측면에서 최상의 조건을 보유하더라도 예상치 못한 여러 문제들로 인해 종종 건설이 지연되기도 한다. 따라서 공학자들은 반드시 이러한 요구 조건을 모두 고려하여 최대한 경제적이고 합리적인 디자인과 건설을 이끌어내야만 한다.


절연 시스템의 기본적인 배열(Basic arrangement of the insulation system)


절연 시스템의 필수적인 요소들이라고 할 수 있는것은 절연체의 종류와 그것의 알맞은 개수이다. 두 전극 사이 연결고리의 전위차는 시스템의 정확한 통제를 위해 반드시 전기적으로 절연되어져야 한다. 고체 절연체들과 액체 또는 가스 절연체 사이에 위치한 경계 표면은 절연 시스템에서 특히 중요한 부분으로 여겨진다.


a) 단일 절연 재료 구조(single material configuration)


외부 지역이나 플라스틱 케이블의 단일 절연 구조의 예는 바로 공기 (air)이다. 대칭적 그리고 비대칭적인 전극의 구조는 대게 매우 다른 행동들을 보여준다. Figure 3.1.-1은 대칭과 비대칭 전극의 전계 강도 E (field strength)를 보여진다. 그림에서 보여지듯이 같은 간극(spacing: s)에서는 대칭적인 구조가 비대칭 구조보다 더 나은 전계의 분배모습을 모여준다 (두 경우 모두 일정한 전압 U 가 적용되있다고 가정). 또한 대칭 구조에서 더 낮은 Emax의 값을 가지는 것을 보여준다. 



위의 구조를 이해하여야 하는 중요한 이유는, 전계 분배의 강도를 통제함으로써 수직적 간극이나 지지적인 절연체의 간극을 조절함으로써 절연 파괴 전압을 증가시킬 수 있다. 그리고 위쪽의 위치한 전극을 이동함으로써 간극 s의 간격을 조절 할 수 있다. Figure 3.1-2는 비균일 전계를 동반한 충격 전압하에서의 절연파괴 전압을 보여주여 이러한 절연 파괴 전압은 h 길이의 증가와 함께 같이 증가하는 경향을 보인다.



b) 여러 절연 물질의 구조(Multi-material configurations)


대부분의 절연 시스템에서는, 여러개의 절연 재료가 공존하며 절연 경계 표면은 절연체 사이에 존재하게 된다. 이러한 경계면에서 발생하는 힘의 방향은 Figure. 3.1-3에서 보여지는 바와 같으며 전계의 탄젠트(tangential) 성분의 전계 강도(electric field strength)는 일정하다.



일정한 절연체 이동 조건으로 인한 수식은 다음과 같다.



경계 표면은 최소한으로만 전기적 응력(stress)가 작용하게 되는데 그 이유는 불순물들과 습도의 존재때문이며 이러한 존재는 레이어(layer)를 오염시킬 가능성이 있다. 따라서, 절연 시스템의 건설적인 조건에서 경계 표면에서 낮은 전계 강도의 유지는 매우 중요하며 특히 tangential 성분의 전계 더 주의깊게 고려하여야 한다. 


만약 표면 경계가 등위적 표면(equipotential surface (Et = 0))에서 동시에 존재하게 되면 특이한 케이스가 유발되는데 이러한 케이스를 횡 경계 표면(transverse boundary surface)이라고 부른다. Figure 3.1.-4 는 트랜스포머에서의 절연 경계(barrier)를 보여준다. 제조 과정에서 이러한 경계(barriers)들은 몰딩처리 되는데 그 이유는 가능한한 등위적 표면의 형태를 유지하기 위함이다. 


종 경계 표면(longitudinal boundary surface)에 관해서는, tangential 요소인 전계 강도 Et는 제한적인 값을가지는 반면, 보통 요소인 En=0의 값을 가진다. 경계 표면은 전계 라인을 따르지만 전계 분배는 고형 절연체에의해 영향을 받지는 않는다.



Figure 3.1.-5 지지 절연체의 구조의 예.


a) 끝쪽의 전계는 돌출 전극의 방식으로 균일화 되었다.

b) 절연체의 형태가 전계로 적용된 모습.


기술적 디자인 측면에서, 전계 강도(field strength)의 보통 요소들뿐만 아니라, tangential 요소들을 제한적 값으로 부터 항상 보호 할 수 있는것은 아니다. 이것을 기울어진 경계 표면(inclined boundary surface) 이라고 한다. 예를 들어, Figure 3.1-6a 처럼 전극과 함께 하는 절연체가 고형의 절연체 안으로 내장된 것을 고려해보자



이 상당히 괜찮은 조건의 구조는 절연체 몸체 중심부의 지름(diameter, *dotte line으로 표시됨)를 확장시킴으로써 더 괜찮은 모델로 향상될 수 있다. 그 이유는, 지름을 늘림으로써, tangential 전계 강도는 줄어들 수 있기 때문이다. Figure 3.1-6b에서 처럼, 표면에 전극이 배열된 구조는 상당히 불안정한데 그 이유는 상대적으로 매우 높은 tangential 전계 강도(field strength) 때문이다. 그리고, 이 경우에는, 부분 방전(partial discharge)는 간신히 예방될 수 있는 정도이다.


c) 절연 구조(Insulating configurations)


전체적인 시스템을 통틀어 견고한 연결이 완료되지 않은 곳의 예로써는 solid insulated coaxial cable 또는 epoxy resin instrument 트랜스포머 등이 있다. Figure 3.1-7에서 보이는것 처럼, 4가지의 다른 절연 구조가 구분되어 진다.


a) 압축적이고 휘는 힘의 송전을 위한 지지 절연체.

b) 송전시 장력을 위한 서스펜션 절연체.

c) 전극의 견고한 관통을 위한 부싱 절연

d) ground된 지역으로 부터의 voltage-carrying electrode의 견고한 lead-out.


야외 구조에서는, 절연체에는 방수 물질이 적용되는데 그 이유는 creepage 경로(연면거리) 를 증가시키기 위함이며 그 다음은 우천시 수로(water channel)의 형성을 예방하기 위함이다. 방수 물질의 형태는 절연체 제조의 사용된 재료 및 예상되는 공기 오염도에 의존하게 된다. 


Creepage 경로 값의 가이드 라인의 따르면 정격전압에따라 2~4kV/mm 정도가 예상된다. 방수 물질의 전형적인 프로필은 porcelain(애자 또는 자기: 도자기 느낌)와 플라스틱 절연체이다(figure 3.1-8). 




플라스틱 절연체에 관해서는, 슬림한 형태 방수 물질이 사용되는데 특시 소수성(hydrophobic)의 물질이 적용된다. 이러한 적용은 creepage 경로를 오염 방어능력의 손실없이 줄일 수 있다. 가스 절연의 설치에 관해서는, 지지 절연체(support insulator)는 그라운드된 메탈 하우징내에서 lead의 간격의 유지가 요구된다.



정격 전압 110kV 이상에서는 타입(c)의 절연체가 선호된다. 3 phase나 복잡한 형태의 절연시스템에서는 타입(d)의 형태를 고려하여야 한다. 특히 고 전압 가스 절연 시스템을 위해서는 지지 절연체의 모양은 반드시 경계 표면에서의 전계 곡면을 고려하여 선택 되어야 한다.


출처:

D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


자연 유기 절연 물질(Natural organic insulating materials)-오일을 함유한 종이(Oil-impregnated paper)


a) 성분 및 제조(Properties, manufacture) 


오일을 함유한 종이는 고 전압 절연 시스템에 있어서 가장 중요한 절연 복합체이다. 여러개의 레이어로 구성된 종이가 절연체로 사용 될 수 있기때문에 종이의 섬유소적인 측면을 고려하면 소프트 페이퍼와 오일의 직렬 연결이 주는 절연적 특성을 고려해 볼 수 있다. 만약, 플레이트 타입의 절연 두께 s 유전율(permittivity) ε를 고려해본다면, 순수 오일(s1, ε1)과 순수 종이(s2, ε2)의 직렬 연결을 생각해 볼 수 있다. 이 두 물체가 직렬로 연결되었을 경우,


s1 과 s2는 미지수 이며 기준 공기 볼륨 v에 의해 소거될 수 있다.


(위의 과정은 수식의 유도과정, 티스토리 수식 입력기의 기능이 제한적이라서 캡쳐하였습니다)


따라서 ε1=2.2 ε2=5.6에 관해서, 오일/종이 라미네이션의 전기적 응력 비율은 E1/E2=ε1/ε2 ~ 2.55 값을 가진다.


따라서, 오일은 종이보다 전기적으로 더 응력이 가해진다. 정교한 라미네이션의 사용을 통해, 많은 수의 얆은 필름을 얻을 수 있으며 높은 전기적 강도를 가지고 있다. 따라서, 오일-종이 절연체가 가지는 우수한 절연 파괴 강도에 큰 기여를 한다고 볼 수 있다. 종이는 오일 레이어의 형태로 업그레드 될 수 있으며 불순물들의 브릿지 현상을 억제하는 역할을 하고 절연시스템의 기계적인 안정성을 보장한다. 


두꺼운 오일-페이퍼의 절연체더라도 절연 파괴 강도는 최대 400kV/mm까지 가지며 DC 전압 캐패시터에서 동작 전계 강도는 최대 100 kV/mm, AC 응력에서는 최대 20kV/mm 까지 적용된다. 높은 질의 오일-종이 절연 방출 요인은 (the dissipation factor) tanδ~3*10^-3의 값을 가지며 볼륨 저항성 ρ~10^15 Ωcm, 그리고 허용 제한 온도는 100℃ 이다.


장비의 오일-페이퍼 절연 시스템은 반드시 주의 깊게 제작되어야 한다. 그 이유는 유해한 가스의 방출을 예방하기 위함이며 이러한 가스는 부분방전 또는 오일의 절연 파괴 전계 강도를 줄일 수 있기때문이다. 추가적으로, 수분은 완전히 제거되어야 한다. 왜냐하면 수분은 오일의 전기적 강도에서 눈에 띄는 왜곡 현상 뿐만 아니라, 종이의 노쇠화(변질)을 야기 시키기 때문이다.


제작과정은 10^-3~10^-4 mbar의 진공 챔버에서 진행되며 온도는 최대 110℃이다. 제품의 건조 시간은 절연체 두께의 따라서 증가하며 수 일에서 수 주의 시간을 소요한다. 


건조 과정은 영구적인 방출요인 모니터링 시스템에 의해 관리 된다. 건조 기간 동안, 잔여 수분과 가스제거과정 사이의 압력은 흡수 등온선에의해 설명된다(Figure 2.5-4).


건조된 페이퍼 절연체는 가능하다면 진공상태에서 오일을 머금는 과정을 거치게 되고 이 과정에 사용되는 오일은 최근 정제된 오일이나 따듯한 미네랄 오일이 적용된다. 종이의 축축해지기 쉬운 특성은 건조한 종이가 오일에있는 수분을 흡수하려는 현상을 유발한다. 결과적으로, 오일은 종이에 잔여 가스들을 용해시키고 부분방전 퍼포먼스 향상에 기여하게 된다.




b) 케이블 절연에서의 오일을 함유한 종이(Oil-impregnated paper as cable insulation)


오일-페이퍼 절연체는 케이블 절연에 있어서 또한 지배적인 역할을 한다. 최대 60kV 전압의 범위에서는 소위 compound-filled cable이 사용되지만 PE cable에 의해 대체되었다. 110kV 또는 이 보다 높은 전압에서는 오일로 채워진 케이블이 지배적이다.


처음에, 전도체는 페이퍼 테이프 절연에 의해 20~30mm 넓이 그리고 0.1~0.15mm의 두께로 오버랩 없이 감겨 있다. 종이 절연체는 건조되게 되고 오일을 함유하게 된다. 미네랄 오일의 낮은 점도성은 오일로 채워진 케이블에 사용되고 미네랄 오일은 레신(resin) 첨가제와 함께 compound-filled cable에 관해서 함께 두꺼워 진다.


Compound-filled cable에서는 오일이 함유되는 온도에서 허용된 재료는 낮은 점도성을 가지고 있으며 주변온도 그리고 동작온도에서는 높은 점도성을 가지고 있다. 이렇게 다른 특성을 가짐으로써, 케이블의 이동 및 설치시 케이블의 물리적 파괴를 예방할 수 있다.


간단한 셋업으로 여겨지는 Compound-filled cable의 사용은 medium 전압에 있어서 부분방전에 위험으로 인해 매우 제한적이다. 열적 응력(stress)의 작용동안은, compound(복합체)는 전도체의 표면 피복으로 확장되게 되고 이러한 확장뒤에는 이전 상태로 돌이킬 수 없는 확장을 하게된다. 냉각 후에는, 가스로 채워진 공간들이 생성되고 이러한 부분들은 부분방전의 시작점이 된다. 그리고 이러한 현상은 허용 동작 전계 강도를 4kV/mm로 제한한다. Compound-filled cable은 또한 내부 와 와부 가스 압력이 작용한 케이블에서 동작 전압에 있어서 60kV이상에서는 그 사용이 제한되게 된다.


이전에 언급한 compound-filled cable 절연에서의 공간의 형성은 그 어떤 위험으로 부터 예방된다. 이러한 예방은 가스 압력을 15 bar nitrogen을 유지하면서 예방하게 되고 이로 인해 공간(cavities)에서의 개시 전압(inception voltage)를 증가 시킬 수 있다. 9kV/mm 의 동작 전계 강도는 SF6를 추가함으로써 최대 12~13kV/mm까지 얻어질 수 있다. 외부의 가스 압력 케이블에서는, 보통의 compound-filled cable은 강철 파이프 안쪽에 설치되며 nitrogen(15 bar 압력)으로 채워진다. 전도체 표면 피복은 압력막처럼 행동하게 되며 공간(cavities)의 생성을 방지하고 공간에서 높은 압력을 유지한다.


낮은 점도성의 미네랄 오일은 oil-filled 케이블에 사용되고 빈 공간(cavities)의 생성을 방지한다. 확장 베슬(vassels)은 보통 수 km의 간격으로 배치되는데 이러한 배치를 통해 케이블을 일정 압력으로 유지할 수 있다. 낮은 점도성의 오일을 따듯하게 함으로써 확장 베슬로 흘러들어 가게 하는데  전도체 표면으로의 확장 없이 가능하다. 냉각시에는, 확장 베슬로 부터 케이블 절연체로 다시 흘러들어 가게 된다.


압력의 값은 절연 파괴 전계 강도에 영향을 미치며 다음 그림에서 보여지는바와 같다.




만약 오일의 압력이 낮은 bar의 값을 가진다면, 낮은 압력의 oil-filled cables을 가지며, 15 bar 의 오일 압력을 가진다면 높은 압력의 oil-filled cable을 가진다. 동작 전계 강도는 최대 14kV/mm이며 유럽국가들 사이에서는, 낮은 압력의 oil-filled cable 사용이 지배적이다.


충동 전압의 강도를 고려하였을때, 더 얇은 종이가 종종 최대 응력 범위내에서 배열된다. 즉, 전도체 내부에 배치되고 반면에, 외부영역은 보통의 케이블 페이퍼가 사용된다. ac 강도의 증가를 제외하고, 균일 전계 분배에서의 라미네이션의 결과는 더 얇은 종이 레이어의 높은 절연 상수로 인해 전압 분배가 외부쪽, 즉 전계가 약한쪽으로 이동하게 된다. 이러한 측정방법들은 400kV의 oil-filled cable을 1640kV의 충동전압을 견딜 수 있게 디자인 할 수 있으며 이 경우 절연 벽의 두께는 28mm 밖에 되지 않는다. 또한 최대 전계 강도는 이 경우에 93kV/mm 이다.


Oil-filled cable의 방출 요인(dissipation factor)은 약 2~4*10^-3정도이다. 이것은 송전 전압의 증가와 관련한 절연 손실이 케이블에서의 전력 전달에 있어서 제한적이라는 것이다. 



방출요인 tanδ=2*10^-3 에서는 전력의 전달과 관련해서 송전 전압 700kV에서 전도체의 지름은 최대값에 도달하며 더 높은 송전 전압은 오직 절연체의 방출요인이 2*10^-3보다 낮을때만 가능하다. 이런 종류의 절연 시스템은 오일을 머금은 플라스틱 호일, 합성 페이퍼, 또는 페이퍼/플라스틱 조합으로 구성된다.


출처:

D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.



유기 물질(Organic materials)은 탄소를 포함하고 있으며, 이러한 탄소는 긴 체인형태나 링의 구조로 형성될 수 있다. 미네랄 오일과 식물성 오일 모두 자연적 유기 용액 그룹에 속한다. 파라핀(paraffin), 비투먼(bitumen) 들은 천연오일의 성분으로써 고체 그룹에 속하고 추가로 왁스(wax), 레신(resin), 나무(wood), 섬유소 재료들(종이, 실크, 솜, 삼배)등이 있다. 고 전압 공학에서 중요한 물질은 미네랄 오일, 종이 그리고 제한적이긴 하지만 나무와 비투먼(bitumen)이다.


미네랄 오일(Mineral Oil)


미네랄 오일은 천연 오일(crude oil)의 가스 제거, 탈수, 불순물 제거 후 증류법에 의해 얻어진다. 주로, 나프탈렌과 있는 포화 탄화수소 또는 알케인 구조와 함께하는 포화 탄화수소가 사용되는데 그 이유는 포화되지 않은 아로마틱 탄화 수소에 비해 화학적으로 더 안정적이기 때문이다. 다음은 이에 관련된 몇몇의 예를 보여준다.



아로마틱 탄화수소의 제거는 정제 과정을 통해 제거 될 수 있다. 잘 알려져있듯이 절연 오일의 전기적 특성은 수분과 가스 함량의 증가로 인해 왜곡되는 현상을 보여 준다. 따라서, 절연에 사용되는 오일은 반드시 고 전압 장비에 적용 되기전에 사전의 처리과정이 필요하다. 이러한 사전 처리 과정은 정제 공장에서 가스 제거와 건조 과정을 통한다.


넓은 지역의 얇은 필름이 생산되는 곳에서 표면 가스제거 과정은 보통 적용되며, 이 과정동안, 오일은 약 50℃~60℃ 온도 및 10^-2mbar의 진공상태에 노출되게 된다




Figure 2.5-1은 오일 정제 플랜트의 기본 셋업을 보여준다. 정제된 오일은 절연 파괴 전압을  50 ... 60kV 정도로 가져야 하며, 이 값은 절연 파괴 전계 강도 200kV/cm 정도에 해당한다(breakdown field strength of about 200kV/cm).


절연 오일은 수분을 흡수하는 성질때문에 변질(노쇠화)위험에 놓여 있다. 열과 산소의 결합된 효과로 인해, 산화 물질들이 오일안에 용해될수 있는 형태로 생성된다(예, acids: 산). 용해되지 않는 물질 또한 생성되는데 슬러지(sludge: 끈적 거리는 진흙같은 물질)의 형태로 생성된다. 오일의 산화는 구리의 촉매 작용으로 인해 가속화 된다. 이러한 이유로 순수 구리(bare copper) 전도체가 절연 오일에 잘 사용되지 않는다. 중립화와 비누화의 수치는 노쇠화 상태를 특정화 하는데 매우 유용하다. 그리고, 중립화 수치는 potassium hydroxide(KOH) 제공함으로써 1 g 의 오일을 포함한 자유 산성 물질들을 중화 시킨다. 반면에, 비누화 수치는 KOH의 양을 설명하고 이  KOH는 자유 산성 물질 그리고 경계 산성물질들을 중립화 시키기때문에 중립화의 수치 또한 포함한다.



Figure 2.5-2는 변질된 오일이 신선한 오일에 비해 방출 요인(dissipation factor)이 더 나쁘다는 점을 보여준다. 따라서, 트랜스포머 같은 절연 오일이 사용된 큰 규모의 장비들은 반드시 오일의 변질 상태를 주기적으로 확인하여야 한다. 이러한 이유로, 절연에 사용되는 오일은 절연 파괴 전계 강도, 방출요인(dissipation factor), 불순물의 함유량이 조사되어야 한다. 만얀 필요하다면, 오일의 정제 과정이 반드시 필요하며 또는 사용된 오일을 교체하여야 한다. 오일의 교체는 중성화 값이  0.5 mg KOH/g oil을 초과하거나, 용해성의 슬러지가 chloroform(CHCl3)클로로포름(마취제의 일종))에서 발견되었을때 실행한다. 


오일의 산화 안정성은 변질(노쇠화) 억제제를 참가하면서 증가시킬 수 있다. 이런 억제제들은 오일 분자에서 깨진 결합과 반응하게 되고 안정적이고, 비활성적이면서 무해한 화합물을 형성하면서 산화 과정을 방지할 수 있다. 억제제들은 이런 진행 과정에서 고갈되게 되므로, 반드시 시간에 맞춰서 다시 채워넣어야 한다. 


미네랄 오일의 응고점(solidifying point)은 -40 ℃이며 전기적 특성은 불순물에 따라 변할 수 있다. 절연 파괴 전계 25 kV/mm의 강도는 약 mm 범위의 간극에서는 유효하다. 얇은 레이어의 절연 파괴 전계의 강도는 약 100kV/mm까지 측정되었으며, 필름은 μm 범위의 간극에서 300kV/mm 정도까지 측정되었다. 다시 말해서, 낮은 절연 상수와의 결합은 오일-종이 절연시스템이 왜 우수한 전기적 강도를 가지고 있는지 설명해 준다.


전기적 방전이 일어날 경우는, 오일은 가스의 형태로 분해 된다. 아크(arc)상태에서는, 오일의 열적 기능저하는 약 60%의 수소와 10%의 다른 가스들, 25%의 포화, 불포화 탄화 수소들의 형태로 일어난다. 기능저하 요인인 수소의 높은 함량은 아크의 집중적인 냉각을 가져온다. 


전극의 예리한 끝부분에서 (예: 캐패시터에서 메탈 호일(metal foils)의 끝부분), 지속적인 방전은 오일 분자들이 고체 물질의 형태로서의 중합반응을 야기 시킬 수 있다(X-wax formation). 이러한 결과는 액상의 요소들보다 더 낮은 전열 파괴 전압(lower breakdown voltage) 값을 가지게 되고 이로 인해 절연 파괴를 시작하게 된다.


열적인 성분에서, 비열(specific heat)과 장기간의 열적 안정화는 특히 매우 중요하다. 절연적인 요소를 제외하고 오일은 높은 비열을 장점을 가지기 때문에 빈번하게 냉각제로도 사용된다. 그러나 장기간적인 측면에서의 열적 안정화는 오직 약 90℃까지만 이루어 지기 때문에 이로 인해 많은 장비들이 제한된 정격 전압(permissible rated power)을 가지게 된다.


절연 물질로서 오일의 응용은 종이 형태의 섬유소나 합판(press board)와의 결합을 통해 이루어진다. 오일을 함유한 종이는 전기적으로 매우 강하며 지속적인 응력 노출에서도 절연능력을 증명했다. 이러한 오일을 함유한 종이는 고 전압 기술에서 매우 중요한 절연 물질로 여겨 진다. 이 러한 기술의 존재로 인해 현재의 트랜스포머, 부싱, 캐패시터, 케이블이 많은 발전을 이룰 수 있었다.


출처:

D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.

Abstract


오일-오일을머금은 섬유소 페이퍼, 그리고 프레스보드(합판)은 컨버터 트랜스포머에서 절연 재료로써 많이 사용된다. 전기적 응력에서의 DC 요소의 존재는 컨버터 트랜스포머에서 오일을 함유한 절연 페이퍼(space charge accumulation inside the oil impregnated paper )안에서 공간전하의 축적을 야기한다. 이미 알려져 있듯이 오일을 함유한 절연 종이에서의 수분 함량은 공간전하 행동에 영향을 미친다. 이 페이퍼는 오일을 머금은 절연 종이가 높은 수분을 함유할때의 공간 전하의 역학에 집중한다. 


Pulsed electro-acoustic (PEA) 테크닉이 미네랄오일을 머금은 400μm 두깨의 single layer 페이퍼 샘플에서 공간전하의 측정을 위해 사용되었다. 샘플들은 다른 전계강도 (7.5kV/mm 그리고 20kV/mm), 서로 다른 온도(30℃ 그리고 70℃), 서로 다른 극성에 노출된다. 실험의 결과는 첫번째로, 높은 수분함량을 포함한 (-) 비균일 전하들이 애노드 부근에서 형성된다. 그리고 나서, 캐소드로 이동하며 속도가 감소하게 된다. 이러한 과정들은 더 높은 온도와 더 높은 전계 강도에서 가속화 된다.


Introduction


많은 전력의 장거리 송신의 수요성의 증가로 인해, High Voltage Direct Current (HVDC)의 기술의 발전은 점점 가속화 되고 있는 중이다. Converter Transformer는 HVDC 시스템에서 핵심적인 역할을 하는 요소이며, 보통 미네랄 오일-미네랄 오일을 머금은 섬유소 페이퍼, 프레스보드로써 절연재료로써 많이 사용된다.


하지만, 전기적 응력에 있어서 DC 요소는 오일을 머금은 절연 종이에서 원치 않는 공간전하의 축적을 유발하게 된다. 절연체에 유발된 이러한 공간전하의 축적은 전계의 왜곡현상을 일으키게 되며 부분적으로 매우 높은 전계 강도를 생성하게 된다. 그리고 이렇게 생선된 높은 부분적 전계강도는 절연능력의 저하를 가져올 수 있다. 따라서, 오일을 머금은 종이 절연체의 공간전하의 특성을 이해하는 것은 매우 중요한 부분으로 고려된다.


절연 시스템에서 수분의 존재는 좋지 않은 요건으로 고려된다. 특히 오일-종이 절연에서의 수분의 존재는 절연 강도를 약화 시킬 뿐만 아니라, 섬유소 재료(e.g. 절연 종이)의 노쇠화(변질)을 가속시킨다. 컨버터 트랜스포머의 오랜작동 기간동안, 절연 시스템의 수분 함유량은 점점 증가하게 되고 그 결과로 인해 절연능력의 저하 또는 트랜스포머의 누수 현상이 발생하게 된다. 추가적으로, 많은 연구자료들이 이미 수분의 함유량이 공간전하 행동에 영향을 끼침을 보여주었다. 


이 페이퍼는 높은 수분 함량을 가진 single layer oil-impregnated paper 샘플에서의 공간전하 역학에 집중하고 있다(수분 함량 >5%). 샘플들은 다른 전계강도 (7.5kV/mm 그리고 20kV/mm), 서로 다른 온도(30℃ 그리고 70℃), 서로 다른 극성에 노출되서 실험된다. 



Experimental Descriptions


a) samples under investigation

이 실험에서는, Gemini X 미네랄 오일(Nynas 회사)가 사용되었으며 이 요일은  IEC 60296의 표준을 충족한다. 조사에 쓰인 절연 종이는 grad K kraft 종이이며 Weidmann 회사에서 400μm의 두께로 제작 되었다. 오일을 머금은 종이샘플의 준비를 위해서, 처음에 신선한 오일은 불순물 제거를 위해 여과 된 후 진공상태로 80℃에서 3일간 수분의 건조를 시킨다. 그리고 나서 이 페이퍼 샘플은 원형의 형태로 지름 4 cm로 절단한 후 105℃의 오븐에서 하루동안 건조 되었다. 그리고나서, 오일과 종이 샘플을 진공 상태의 오븐에 24시간동안 같이 두면 오일을 머금은 절연 종이를 만들 수 있게 된다.


위의 과정들 이후헤, 오일을 머금은 종이 샘플의 수분 함유량은 총 무게의 0.5% 미만의 양만을 함유하게 된다. 높은 수분 함량을 가진 샘플을 얻기 위해서는, 이 새롭게 만들어진 건조한 오일-종이 절연종이 샘플을 보통의 환경에 노출시켜 수분을 흡수시켜 5%이상의 수분을 함유할때까지 내비둔다. 


b) Test Set-up

오일을 머금은 종이의 공간전하를 측정하기 위해서는, PEA 측정 기술이 사용되었다. PEA 시스템에서, 공간전하는 5ns 동안 전기적 펄스에 의해 excited 된다. 그리고, HV fast 스위치에의해 발생되는 1kV의 진폭(amplitude)이 적용된다. 들뜬상태(excitation)이후에, 생성된 아쿠스틱 시그날은 공간전하의 정보를 함유한채 piezoelectric sensor를 통해 이동하게 되고 이 센서는 9 μm 두께의 PVDF film에 내장 되어 있다. 그리고 나서, 이 어쿠스틱 시그날은 전압 시그널로 변환되게 된다. 그리고 나면, 전압 시그날은 증폭됨과 동시에 기록으로 남게 된다. 


고 전압 구리(copper) 전극의 반경은 10 mm이다. HVDC의 전원은 Glassman Company에 의해 제작되었으며 최대 60 kV DC stress까지 생산 가능하다. 




주파수 영역 분광학 기술(Frequency domain spectroscopy (FDS))이 높은 수분을 포함하고 있는 오일함유 종이샘플에 적용되어 결과의 분석을 돕는다. Omicron Dirana는 주파수 영역 분광학의 분석을 위해 사용되었다. 테스팅 시스템의 플레이트 전극이며 나일론과 Perspex의(cell made of nylon and Perspex) 섬유 조직이다.





PEA 시스템에서 전극의 사이즈는 high voltage 전극의 사이즈와 동일하다. 테스트 박스는 알루미눔 박스로 봉합 되어 있으며 Omicron Dirana와 컴퓨터에 연결되어 있다. FDS 분석을 위해 샘플에 적용된 peak voltage는 100V이고 측정된 주파수 범위는  5 kHz~100 μHz 이다.


Experimental Results


a) Volt-on test for paper sample with higher water content




Figure 3은 수분을 5.38% 그리고 온도 30℃, 전계 강도 20 kV/mm 에서 전압이 걸렸을때의 결과를 보여준다. 초반 10분동안은, (-) 비균일 전하들이 애노드 (즉, 고 전압 전극) 부근에 나타남을 보여줬다. (-) 비균일 전하의 형성후에, 이 전하들은 캐소드로 옮겨가기(그라운드된 전극) 시작했다. 이 과정에서 캐소드로 이동한 전하의 속도는 감소하였다. 동시에, 애노드와 캐소드 모두에서 표면전하는 응력의 작용 시간에 맞춰서 명백히 감소하였다. 또한 이 과정동안, (+)전하들이 애노드에서 더 깊게 주입되는 모습이 발견되었다.


b) Volt-on test under different temperature


온도가 관측된 역학 과정에서 어떻게 영향을 끼치는지를 알아보기 위해, 공간전하의 행동이 전계 강도 20 kV/mm, 온도 70℃의 조건하에서 측정되었다. Figure 4는 이 실험의 결과를 보여주고 있다. 70℃에서의 공간전하의 역학은 30℃에서의 공간전하 역학의 모습과 매우 유사하다. 하지만 높은 온도는 더 빠른 역학 과정을 보여주었다. 한 시간동안의 응력(stress) 작용에서는, (-) 전하는 거의 캐소드 부근으로 이동하였다. 




c) Volt-on test under different field strength


 높은 수분 함량의 샘플은 7.5 kV/mm의 전계강도에서 테스트 되었으며 이 조건은 관측된 공간전하 역학에서 전계의 강도가 어떠한 영향을 주는지 알아보기 위함이다. Figure 5는 이에 대한 결과 그래프이다. 매우 낮은 전계 강도에서는 전하의 이동현상이 여전히 발생하였으나, 매우 느린 속도로 진행되었다. 초반 20분동안 형성된 비균일 전하와 한 시간의 응력이 끝나는 시점에서의 (-) peak 전하는 오직 종이 두께의 1/4만을 이동하였다.



Figure 6는 Fig 3,4,5에서 보여준 (-) peak 전하 위치에 대응하는 공간전하의 이동 속도를 보여준것이다. 위의 결과는 샘플이 전계강도  20 kV/mm에서 테스트된 값이다. 초기 변동 이후에, 이동속도는 이동 거리의 비례하며 점진적으로 감소하는 모습을 보여주었다. 스트레스된 샘플 (전계강도 7.5 kV/mm)에서는 이러한 감소 경향이 관측되지 않았는데 그 이유는 너무 느린 속도의 값들 때문이다. 같은지점에서의 높은 이동 속도는 높은 온도 또는 높은 전계 강도에서 관측되었다. 이러한 경향은, 공간전하의 역학적 행동이 전계와 온도 모두로 부터 여향을 받는것을 알 수 있다. 



VERIFICATIONS AND DISCUSSIONS


Figure 1에서 보여지듯이 high-voltage 전극과 ground 전극에 사용되는 재료는 다르다. high-voltage 전극에 사용되는 재료는 보통 반도체성향을 띄는 고무이지만, ground 전극에 사용되는 재료는 알루미늄이다. 전극의 재료로 인해 유도되는 현상을 조사하기 위해, 전계 강도 20 kV/mm와 (-) 극성이 30℃에서 샘플에 적용되었다. 

Figure 7에서 보여지듯이, 같은 공간전하 역학적 행동이 관측 되었다. 그러나, 이 경우 (-) peak charge는  ground 전극(애노드) 주변에서 형성되었고 ground 전극에서 high-voltage 전극(캐소드)로 이동 하였다. 따라서, 전극의 물질과 상관없이 (-) peak charge는 항상 애노드에서 형성되어 캐소드로 이동한다. 


추가으로 공간전하의 역학적 현상의 조사를 위해서 재응력(re-stress)이 가해지는 시스템이 디자인 되었다. 높은 수분을 포함하는 샘플은 첫번째로 stress에 노출되고 역학적 모습이 조사되었다.(1시간 volt-on test) 그리고 나서는, 전계는 전하의 방출을위해 한 시간동안 제거된다. 


모든 공간전하들이 방출되면, 20 kV/mm의 전계 강도가 재 적용되고, 공간전하의 정보들이 기록되게 된다. Figure 8은 재응력(re-stress)이 가해진 실험에 관한 결과 모습이다. 이 결과로부터 알수 있는점은, 전하들이 완전히 방출되었더라도, 전계가 다시 가해진후 이전 실험에서 마지막 분배 모습처럼  공간 전하 분배가 즉시 나타난다는 점이다.

이러한 현상은 수분 함량이 높은 오일-종이 샘플에 관해서, 기억효과(memory effect) 가 HVDC 전계의 관해 유도 되었다는것을 알려준다. 결론적으로, 이 결과로부터 추정될 수 있는것은 샘플 내부에서의 높은 수분합량과 높은 전계로 인해 장기간의 변화가 유도 된다는 점이다. 이러한 결과으 분석을 돕기위해 FDS 분석기술이 샘플에 도입되었다. 응력에 노출되지 않은 샘플이 처음에 FDS 기술에 의해 상온에서 분석되었으며 후에, 샘플은 응력에 노출된다 (20 kV/mm at the temperature of 30℃, 2 hours). 이로 인해 (-) peak charge 는 캐소드 주변으로 이동할 수 있게된다. 그리고 나서 샘플은 FDS 기술에 의해 재 분석된다. 



샘플의 실제 유전율(permittivity)과 소멸 요인(dissipation factor)이 위의 도표에 나타나있다. Figure 9에서 보여지듯이, 주파수 영역이 50Hz보다 높은경우, 약간의 변화가 응력 이전과 이후의 관련해서 발견되었다. 주파수 영역 1 mHz ~50 Hz에 대해서는, 뚜렷한 차이가 관측 되었으며 이 결는 샘플이 가지고 있는 절연 특성의 변화를 나타낸다. 이 영역에서는, 실제 유전율은 줄어든 주파수 영역과는 반대로 증가하는 경향을 보여준다. 그러나, 응력 작용 이전에 샘플은 더 가파른 증가를 보여주며, 이것은 안정화 과정이 약 0.1Hz에서 약해짐을 보여준다. 1mHz 보다 적은 영영에서는 실제 유전율의 값은 두 샘플이 동일함을 보여준다.


Figure 10에서 보여지는 소멸요인 (dissipation factor)은 응력 이후의 샘플에 관해서 감소된 주파수의 반대로 증가하는 경향을 보였다. 응력 이전의 샘플에 관해서는 주파수 영역이 3Hz보다 높고 60mHz 보다 낮은경우, 소멸요인의 행동은 응력 이후 샘플과 같은 현상을 보였다. 또한 이 역시 안정화 과정이 약 0.1Hz에서 약해짐을 보여준다.


이는 FDS와 관련해서, 섬유소의 낮은 주파수 확산(1Hz에서 안정화를 보여주는 섬유소)는 주로 수분-섬유소 혼합 위상의 공동 모션에 의해 야기된다. 즉, 높은 수분함량을 보유한 샘플에서의 주파수 변화는 아마 수분의 조건의 변화의 기여할 수 있다(절역 특성관련, 수분의 상태와 배치의 관련 될 수 있다).


공간전하의 역학에 관해서, 대량의 오일을 머금은 종이 샘플에서의 (-) peak charge는 아마 샘플의 비 균일성으로부터의 결과물일 수도 있다. 전기적 응력하에서, 수분의 조건은 변할 수 있으며 결과적으로, 부분적 절연 특성(permittivity and conductivity)이 변할수 있다. 그러나 변화는 샘플 두께의 관해서 고르지 못할 수 도 있는데 그 원인은 균일하지 못한 전계의 분배때문이며 이것은 전계 의존 현상으로 나타날 수 있다. 


결론적으로, 샘플은 두께와 관해서 더 이상 균일하지 않다. 따라서 면과 면사이에 낀 (-) 전하들은 샘플의 비 균일성으로 인해 유도 될 수 있다.  이 현상은, 샘플이 공간전하의 행동과 관련해서 기억효과(memory effect)가 나타나는지를 설명할 수 있다(Figure 8). HVDC 응력 하에서는, 샘플의 비균일성은 지속적으로 발전될 수 있으며, (-)의 이동현상을 이끌어 낼 수 있다. 


이러한 추측들로부터, 캐소드에서의 표면전하 감소는 아마도 대량으로 형성되는 (-)전하의 형성으로 인한 인근 전계강도의 감소로 인해 야기될 수 있다.


출처:

Z. Mu, Z. D. Wang, and Q. Liu, “Space charge dynamics of oil-impregnated paper insulation with high water content,” 2017 IEEE 19th Int. Conf. Dielectr. Liq. ICDL 2017, vol. 2017–January, no. Icdl, pp. 1–4, 2017.
















Introduction


파워트랜스포머의 전도체 와인딩은 절연유를 함유한 종이로 절연 되어 있다. 그리고 이러한 절연 기술을 트랜스포머의 수명을 약 25년 정도까지 사용가능하게 만든다(65~69℃에서 작동할 경우). 전형적인 트랜스포머는 10~12톤의 종이(30~120μm 두께, 0.7~0.8 kg/m^3밀도)와 45톤의 오일을 포함하고 있다. 열, 수분, 그리고 산소는 섬유의 변질을 야기하며 중합 분자 체인의 길이(polymer molecular chain length)를 줄일 뿐만 아니라 물질의 기계적 강도까지 약화 시킨다. 기계적인 부분 실패는 모자란 와인딩이나 절연종이의 파편, 오일 덕트안쪽의 섬유소쪽에서 나타날 수 있으며, 또한 전기적, 열적인 절연실패를 야기 할 수 있다. 트랜스포머 와인딩의 장력과 규정의 변화는 기계적, 전기적 왜곡을 야기 할 수 있으며, 노쇠화된 절연체 또는 와인딩의 쇼트회로 force의 관한 실패의 가능성을 증가 시킨다.


수분은 노쇠화의 주요 원인 중 하나이며 절연시스템에서의 수분의 존재는 전도성을 증가 시킬 수 있고 가스 버블의 형성에 도움을 주게 된다. 또한 트랜스포머에서의 수분은 전반적인 절연 시스템의 열적 안정성을 떨어뜨리게 되며 이러한 현상은 특히 과부화 조건에서 나타나게 된다.


절연종이는 kraft 과정으로 부터의 wood pulp로 만들어진다(탈 레닌과정 포함). 이렇게 만들어진 절연 종이는 90%의 섬유소와 6~7%의 lignin으로 구성된다. 보통의 자연적인 절연종이의 수분 함유량은 전체 무게의 4~5%이지만 절연종이로 사용될 경우 수분 함량이 0.5%이하로 떨어질때까지 건조 시킨다. 그리고 이렇게, 만들어진 종이는 절연 오일이 함유되도록 담가지게 되며 이러한 과정을 통해, 절연 능력의 향상을 증가 시키게 되고 와인딩부분에 있어서 냉각 작용을 이끌 수 있게 한다.


절연 종이의 주요 성분은 섬유소이며 이 섬유소는 자연적 글루코스 중합체이다 (natural polymer of glucose). 단량체(monomer) 유닛들은 긴 직선의 체인에서 결합되어 있으며 자연적인 상태에서 평균 체인 길이 또는 폴리머화 정도 (degree of polymerisation, DP) 20,000 monomer unit을 초과한다. 종이의 기계적 강도는 섬유소 본연으로 부터 오며 이러한 섬유소는 분자내 그리고 분자사이의 수소 결합에 의해 증가한다. 그리고 섬유소 체인과 미세 크리스탈라인 구조 사이에서도 일어난다.


종이의 강도는 주로 섬유서의 DP 수치의 따라 결정되게 되는데 제조 후, 종이의 DP 수치는 보통 1000~1300 사이 정도이다. 트랜스포머의 건조과정은 이러한 수치를 약 950까지 감소 시키며 동작 기간 동안의 노쇠화로 인해 이 수치는 더 하락하게 된다. DP 수치 950~500사이에서는, 종이의 강도는 실제적으로 일정하지만 수치가 500~200 범위라면, DP의 감소의 따라 종이의 강도 또한 비례적으로 같이 감소 하게 된다. DP 수치 150에서의 종이는 초기의 값의 20%정도의 강도만을 가지게 되며 DP 150 미만은 종이의 강도가 존재하지 않게 된다.


전기적 절연 종이에서 섬유소의 기능 저하는 저온의 화학반응의 복잡한 결과를 통해 일어나지만, 아직까지 완변하게 설명되지 않았다. 이러한 과정들은 체인 절단, 절연 파괴 성분의 배출(수소, 짧은 체인 탄화수소, 일산화 탄소, 이산화 탄소, 수분)을 포함하게 된다. 이러한 성분들은 오일안에서 용해되게 되며 트랜스포머 상태를 예측하는데 사용된다. 종이의 기능저하는 또한 더 큰 분자의 배출을 야기 하며 그 예로 프루프랄(2- furfuraldehyde (furfural))을 이야기 할 수 있으며 이 프루프랄은 오일안에서 확인되며 종이의 상태에 관하여 더 구체적인 정보를 전달 할 수 있다.



Failure mechanisms


섬유소의 변질(degradation)은 DP(폴리머화 정도 (degree of polymerisation) 수치를 낮추는 결과를 가져오게 된다. 그리고 이로 인해, 섬유 내부의 결합이 파괴되는 현상을 겪게되고 기계적 강도의 손실 및 섬유소의 찢어짐 현상 및 충격을 받는 현상에 놓이게 된다. 대조적으로, 전기적 절연 강도는 큰 영향을 받지 않는다. Figure 1에서 보여지는바와 같이 매우 많은 과정들이 이러한 변질과 실패의 기여하게 된다.



가스의 증식은 공통적으로 언급되는 동작 실패요인이다. 초기에 방출된 가스는 수분의 형태이지만, 온도가 증가 할수록 (90℃ 이상) CO 와 CO2 가 형성되게 된다. 가스 버블의 형성은 최소 150℃에서 paper/oil system에서 일어나게 된다. 가장 큰 위험요소는 과부하 조건 초기 동안에 존재하게 되는데 특히 급작스런 온도의 상승은 절연시스템으로부터 빠른 속도의 수분 증식을 야기 하기 때문이다.


오일에서의 가스 버블 형성은 부분방전에의해 지속될 수 있으며, 이러한 가스 버블의 증식은 섬락현상(flashover)로 이어질 수 있다. 절연 종이가 포함된 다른 실패 매커니즘에는 노쇠화 과정의 축적으로 인한 오일과 종이의 증가된 전도성이 포함된다. 감소된 저항성과 절연능력의 손실로 인한 열적 불안정성도 이에 파함된다.


추가록, 수분의 증식으로 인해서 오일에서의 섬유소 물질은 부분적 전계와 나란히 하려는 경향을 보여주며, 이러한 결과는 쇼트서킷, 전도체 사이의 미약한 절연 경로(특히 젖었을경우)를 발생시킨다.


Effects of temperature, water and oxygen on insulation life


  • Effects of temperature: 온도의 증가 특히 (140℃ 이상)에서는 노쇠화의 속도가 급속도로 증가함을 보여준다.

  • Effects of oxygen: 산소의 증가 또한 종이의 수분 함량을 0.3%에서 5%정도까지 증가 시키며, 이로 인해 변질의 속도를 빠르게 만든다.

  • Effects of water: 종이의 변질 속도의 증가는 직접적으로 수분의 함량을 늘리게 되고 이로인해 절연 기술 수명에 영향을 미치게 된다.


출처: 
G. C. Stevens and A. M. Emsley, “Review of chemical indicators of degradation of cellulosic electrical paper insulation in oil-filled transformers,” IEE Proc. - Sci. Meas. Technol., vol. 141, no. 5, pp. 324–334, 2002.


Abstract


트랜스포머는 파워그리드의 안정적인 구동을 위해 가장 중요하게 여겨지는 장비이다. 이 페이퍼는 미네랄오일/자연 이스터 오일의 혼합물을 통해 파워 트랜스포머의 노쇠화 방지에 초점을 두었다. 혼합오일-종이 절연체 그리고 미네일 오일-종이 절연체은 264일동안 실험되었으며 110℃에서 열적 노쇠화를 가속 시켰다.


오일의 색깔, 오일 산성도, 종이의 중합 반응의 정도(the degree of polymerization, DP), 그리고 오일-종이 절연의 다른 노쇠화 조건에서의 열적 안정성들이 조사되었다. 후에 연구 결과에서 보여지듯이, 혼합 절연 오일은 오일의 산화를 억제할 뿐만 아니라, 혼합오일-종이 절연체의 노쇠속도 비율 또한 억제 시킴을 발견했다. 다시 말해서, 오일-종이 절연은 혼합 오일을 사용함으로써 열적 안정화의 향상을 기대할 수 있다.


Introduction


트랜스포머의 역할은 안정적 그리고 효과전기 전기공급의 중점을 두기 때문에, 전력의 송전과 배전에 있어서 가장 중요하게 여겨지는 부분중의 하나이다. 대부분의 고 전압 트랜스포머는 용액으로 채워져 있으며 이러한 용액은, 전기적 절연체로 사용되기도 하지만 열 매체(heat transfer medium/냉매제)로 사용되기도 한다. 이러한 파워 트랜스포머 안정성의 향상과 수명의 연장을 위해서 절연 재료, 특히 절연오일에 집중하여야 한다.


트랜스포머에서 가장 많이 쓰이는 절연용액은 미네랄 오일이다. 미네랄 오일은 상대적으로 가격이 저렴한 편이며, 가격의 비해 좋은 전기적 특성들을 가지고 있다. 하지만, 새로운 물질들의 등장으로 인해, 미네랄 오일의 단점들이 많이 노출 되어왔다. 그리고 21세기의 벌어진 전세계 오일 쇼크는 새로운 물질 또는 대체물질을 찾게 하는 기폭제를 마련했다.


자연 이스터(natural ester)는 미네랄 오일과 비교하였을때 화재로부터의 안정성, 친 환경성, 우수한 절연 강도를 보유하고 있기 때문에 현재 사용되는 트랜스포머 절연 시스템에 적합하다. 기존의 봉합된 튜브관 노쇠화 연구들은 절연종이가 자연 이스터안에 있을때 열적 노쇠화가 현저히 느려진것을 발견했다. 하지만, 자연 이스터 용액은 미네랄오일의 비해 낮은 산화 안정성, 높은 유동점, 점도성의 단점을 가지고 있기때문에 사용전 여러 방면으로 고려를 해야한다.


미네랄 오일과, 자연 이스터가 가지고 있는 각각의 장점과 단점을 보완할수 있도록, 미네랄 오일과 자연 이스터 용액을 혼합하는 방법을 고려 할 수 있다. 이 연구에서 혼합의 비율은 80%의 미네랄 오일 20%의 자연 이스터 오일( 올리브 오일로 부터 추출)이다.

6-ditert-butyl-4-methylphenol (T501) 과 high-purity alkylation-α-naphthylamine (L06)이 이 혼합 오일에 0.3%의 농도로 추가 되었으며 이러한 추가물질은 산화 안정성을 향상 시킬 수 있다. 노쇠화 방지를 위해서, 장기간의 동작 동안 파워 트랜스포머의 성분들은 여기서 만들어진 혼합 오일에 의해 향상 될 수 있다. 


이 페이퍼에서는, 가속화된 열적 노쇠화 실험은 110℃에서 264일동안 수행되었으며, 미네랄오일-종이 절연체 vs 혼합오일-종이 절연체의 비교를 중점으로 두고 있다.


Experiment


A. 재료(Material)


실험에서 사용된 종이는 Kraft paper이며 트랜스포머에서 많이 사용된다. Kraft paper의 기술적 수행능력은 international standard  IEC 641-3-1를 충족 시킨다. 또한 트랜스포머 실험에 쓰인 미네랄 오일은 보통의 미네랄 오일이며 XinJiang Kelamayi, China 에서 생산 되었다. 혼합 절연 오일은 이 연구팀에 의해 개발 되었다.


B. 가속화된 열적 노쇠화 실험(Accelerated Thermal Aging Experiment)

 샘플에 대한 사전 조치 들은 다음과 같다. 첫째, 샘플 종이는 5g의 롤형태로 말려 있으며 이를 통해 유리병에 들어갈 수 있게 한다. 현재 동봉된 트랜스포머의 실제 산화를 시뮬레이션 하기 위해 모든 샘플들은 진공 챔버에 두었으며 90℃에서 48시간 동안 건조 시킨다. 두번째로는, 절연 오일 (40℃)은 진공 박스 안으로 스며들게 한후, 24시간동안 평상 온도(room temperature)로 내린다. 세번째로는, 이 말려진 페이퍼 롤을 진공 박스로 부터 꺼낸후 250ml의 유리병안으로 넣어둔다. 그리고 나서, 미네랄 오일 또는 혼합 절연 오일을 이 유리병 안에 20:1(용액:종이)의 비율로 부어 넣는다(각각의 유리병은 200g의 오일과 10g의 종이를 가진다). 실제 트랜스포머의  구리 이온을 시뮬레이션 하기 위해서, 10cm^2의 얇은 구리판을 모든 병에 배치한다. 그리고 나서, 각각의 병은 질소로 충전후 밀봉한다. 마지막으로, 이 유리병들은 노쇠화 오븐에 넣어지고 110℃까지 가열되어 가속화된 노쇠화 테스트를 진행한다. 초기 종이의 수분 함량은 0.5% 미만으로 한다.


C. 열중량 분석 실험(Thermogravimetry Experiment)


열중량 분석(Thermogravimetery (TG))은 물질들이 통제된 온도 프로그램에 있는동안, 온도의 함수로써 물질의 질량(mass)을 측정하는 기술이다. Derivative thermogravimetry (DTG) 커브는 처음의 derivative of TG 커브이다. TG와 DTG 분석 기술의 적용은 미네랄 오일-종이 절연 시스템의 오일과 종이의 열적 행동을 비교하기 위함이고 또한 혼합오일-절연 시스템에서의 오일과 종이의 열적 행동을 분석한다. 이 페이퍼는 초기 분해 온도(initial decomposition temperature (IDT)), 최대 분해 속도(maximum speed of decomposition (MSD)), 최대 분해 속도에서의 온도(temperature at maximum decomposition speed (TMDS))에 집중하고 있다.


각각의 미네랄 오일 샘플(15~15.4mg)과 혼합 오일 샘플(15~15.4mg)은 33℃ 부터 250℃ 그리고 450℃까지 테스트되었다. 온도 확인 속도는 질소 유동(50ml/min)하에서 3℃/min의 비율로 측정되었다. 종이의 TG 실험 이전에는, 오일을 함유한 종이 샘플은 각각 다른 기간동안 노쇠화 되었으며 아세톤(aceton 100ml)에 담가지게 해놨다. 그리고, 동일하게 동봉된 유리병에 15일동안 각각 놓여지게 된다. 추가적으로 아세톤은 5일마다 한번씩 교체되었다. 이런 방식으로 오일이 추출 되었으며 그리고 각각의 종이 샘플(5.0~5.2mg) dms 33℃ 부터 500℃까지 질소 유동 (50ml/min)하에 온도 확인 속도 5℃/min 로 측정되었다.



Result and Discussion


A. 오일 색깔(Oil Color)

오일의 색깔은 오일 자체의 질적 특성을 보여주는 중요한 요소이다. 몇몇의 경우에는 오일의 색깔로 오일의 부패 정도가 확인 가능하다. Figure 1에서 보여지듯이 미네랄오일-종이 절연 샘플과 혼합오일-종이 절연 샘플에서의 오일의 색깔을 보여 주며 이 오일들은 110℃도에서 다른 기간동안 노쇠화가 진행 되었다. 신선한 미네랄 오일은 색이 밝고 맑았으며, 신선한 혼합 오일은 자연 이스터(올리브 오일)로 인해 노란 빛을 띄었다. 또한 미네랄 오일은 시간이 지날 수록 갈색 또는 적갈색의 색을 띄게 됬으나, 혼합 오일은 최종적으로 초록빛을 띄었다. 열적 노쇠화 과정동안, 오일색의 변화 속도는 오일의 부패화 속도를 반영한다. 미네랄 오일의 퇴색 속도는 혼합오일의 비해서 상당히 빠른 편이다. 더욱이, 끈적한 슬러지(sludge)가 눈에 보였으며, 절연 종이 바깥쪽 표면과 미네랄 오일-페이퍼 샘플 유리병 벽면에 침전됨이 174일과 264일에 확인되었다. 반면에, 혼합 오일-종이 절연 샘플에서는 슬러지(sludge)는 샘플 간격동안 발견 되지 않았다.




B. 오일의 산성도(Oil Acidity)


오일의 산성도는 절연 오일의 직접적으로 노쇠화 정도를 알려주는 지표이기때문에 이 실험에서는 혼합오일과 미네랄 오일의 노쇠화 진행과정동안의 오일 산성도가 측정되었다. Figure 2는 혼합 오일과 미네랄오일의 노쇠화 시간에 따른 산성도를 나타낸 모습이다. 보통의 조건에서는 자연이스터의 산성도가 미네랄 오일의 산성도보다 높은 경향이 나타났다. 혼합 오일은 20%의 자연 이스터와 80%의 미네랄 오일로 구성되어 있기때문에 신선한 혼합오일의 산성도는 신선한 미네랄오일보다 아주 약간 높은 편이다.



노쇠화가 진행되면 혼합오일과 미네랄오일의 산성도는 증가하게 된다. 노쇠화 초기에는 혼합 절연 오일과 미네랄 오일의 부패속도는 매우 느린편이며 두 오일의 산성도는 아주 약간 증가하는 정도이다. 하지만 일정 시기를 지나면 두 오일은 빠르게 부패하게 되고 산성도 또한 급격하게 증가한다. 하지만 이 특정 시기 이후에, 혼합오일의 산성도는 미네랄 오일의 산성도보다 현저하게 낮음이 포착되었다 (89일 차 부터). 이 지표는 장기간의 노쇠화 과정동안 혼합 오일이 미네랄 오일의 비해 산화 안정성이 훨씬 우수함을 보여준다. 즉, 일정 기간 이후에는 혼합 오일은 더 느린 노쇠화 비율과 낮은 오일 산성도를 포함하고 있다는 뜻이다.


C. 오일의 열적 행동(Thermal Behavior of Oil) 


Figure 3 은 오일-종이 절연 샘플에서의 혼합오일과 미네랄 오일의 TG 와 DTG 커브 각각 다른 노쇠화 시간에 따라 나타내어 졌다. 미네랄 오일의 분해 반응은 주로 한 단계이며, 혼합 오일의 분해 반응은 주로 두 단계로 이루어 진다. 혼합오일이 2 단계로 이루어지는 이유는 미네랄 오일과 자연 이스터 용액의 혼합물이기 때문이다. Figure 3에서 보여지듯이 미네랄 오일의 분해는 주로 100℃ 부터 200℃까지 이루어진다. 30℃ 부터 250℃까지는 미네랄 오일의 분해만이 존재하고 질량은 100%에서 20%로 감소하게 된다. 그리고 나서 250℃ 부터 450℃까지는, 혼합된 절연 오일에서의 자연 이스터 구성원이 질량 손실이 일어나게 된다. 이로 부터 추정 되는것은, 자연 이스터의 열적 안정성은 미네랄오일에 비해 더 우수하다는 점이다.


Table 2는 오일-종이 절연 시스템에서의 혼합 절연유와 미네랄 오일의 TG/DTG 데이터를 3℃/min의 가열 비율에서 각각의 다른 노쇠화 시간의 따라 나타내었다. 모든 미네랄 오일 샘플의 초기의 IDT는 1℃ 내외에서 변동함을 보여 주었었다. 혼합 절연 오일 샘플에서의 미네랄 오일 IDT 역시 1℃내외에서 변동하였으나, 혼합 절연 오일 샘플안에서의 자연 이스터는 1.5℃내외에서 변동함을 보여 주었다. 


하지만, 모든 샘플시간과 관련해서, 자연 이스터의 초기 분해 온도는 미네랄 오일에 비해서 약 2.5배 정도 더 높은 경향을 나타내었다.

이 두 그룹 오일의 열적 행동의 비교는 Figure 3(b)에서 더욱 뚜렷하게 나타난다. 모든 미네랄 오일 샘플(혼합 절연유에서의 미네랄 오일과 자연 이스터 용액 포함)의 최대 분해속도에서의 온도는 노쇠화 과정동안 매우 적은 변화만을 보여주었다. 하지만 자연 이스터의 최대 분해 속도에서의 온도는 미네랄 오일보다 2배 이상의 값을 보여 주었다. 추가로, 모든 미네랄 오일 샘플과 혼합유에서의 미네랄 오일의 최대 분해 속도는 노쇠화가 진행될때 살짝 감소함을 보였다. 반면에, 혼합유에서의 자연 이스터 용액은 노쇠화 진행 과정동안 거의 변하지 않았다. 



Figure 3, Table 2, Table 3으로 부터 알수 있는것은 자연 이스터의 IDT와 TMDS 는 모든 샘플 시간대에서 미네랄 오일보다 높음을 확인 할 수 있다. 자연 이스터의 열적 안정성은 또한 노쇠화 과정에 있어서 미네랄 오일보다 우수함을 보여주었다. 자연 이스터와 미네랄 오일로 구성된 혼합 절연유는 자연 이스터의 우수한 열적 안정성으로 인해 혼합유의 열적 안정성의 향상에 큰 도움을 줄 수 있게 된다. 


D. 종이의 중합 반응 정도(Degree of Polymerization (DP)of Paper)


절연 종이는 보통 섬유소로 구성되어 있다. 섬유소는 선형, 주기적은 중합체 체인, β-D glucopyranose 로 구성된다. 체인당 일정 유닛을 DP라고 부른다. 그리고 이 DP는 섬유소 종이의 노쇠화 상태를 나타내기 위해 사용된다. 신선한 종이의 DP 는 약 1200정도이며, 200 정도의 수치 하락까지는 받아들일 수 있는 정도이며, 종이의 장력은 약 20%정도 하락하게 되고 내부 섬유의 힘은 축소되며, 섬유소 종이는 트랜스포머안에서 수명을 다하게 된다. Figure 4는 혼합유와 미네랄 오일 (110℃, 264일동안)에서의 종이 노쇠화 관련 DP 수치를 나타낸다. 특히 40일 이후에는 혼합유에서의 종이의 DP 값은 미네랄 오일에서의 종이의 DP 값보다 훨씬 높은 것을 알 수 있다. 이러한 수치는 혼합 오일은 절연 종이의 노쇠화를 효과적으로 억제함을 나타낸다.



E. 종이의 열적 행동(Thermal Behavior of paper)


Table 4와 Table 5에서 보여지듯이, 혼합유와 미네랄 오일안에서의 노쇠화 과정 종이의 초기 분해 온도(IDT)는 노쇠화 시작과 함께 초기에 증가 한 뒤 하락하는 모습을 보여준다. 특히 174일 이후에는 PINEM의 IDT 는 PIMO보다 높은 모습을 보여주었다. 그리고 110℃에서의 전체 노쇠화 과정동안, 혼합된 절연 오일에서의 노쇠화된 종이의 DP는 미네랄 오일에서의 노쇠화된 종이의 DP 값보다 높음을 보여주었다. 그리고 PIMEM의 TMDS 는 PIMO 노쇠화 시작후 동일 시점에 약간 높은 모습을 보여 줐다. 그리고 PINEM의 MSD은 노쇠화 진행후 동일시점에 PIMO보다 약간 낮은 모습을 보였다. 이러한 현상들은, 혼합유에서의 종이의 열적 특성이 미네랄 오일에서의 종이의 열적 특성보다 우수함을 보여준다.


*maximum decomposition speed (TMDS)

*maximum speed of decomposition (MSD)


Conclusions


위의 실험 결과를 모두 종합해 보면 혼합유(미네랄오일+자연 이스터 용액)의 사용은 오일-종이 절연 시스템의 노쇠화 방지효과를 증가 시킬 수 있음을 보여준다. 또한, 혼합유의 사용은 절연 종이의 변질의 속도를 억제하는 모습을 보였고 혼합 오일을 사용함으로써, 오일-종이 절연 시스템의 열적 안정화의 향상을 기대 할 수 있게 된다.


출처: R. Liao, J. Hao, L. Yang, and S. Grzybowski, “Study on aging characteristics of mineral oil/natural ester mixtures-paper insulation,” Proc. - IEEE Int. Conf. Dielectr. Liq., no. July 2017, 2011.


전기 에너지의 송전과 배전 네트워크는 파워 트랜스포머, 스위치기어, 과 전압 어레스터(overvoltage arrestors), 절연체, 파워 케이블, 트랜스포머등의 고 전압관련 장비들이 포함된다. 그리고 이러한 고 전압 장비들은 내부와 외부의 과 전압으로 인해 순간적으로 매우 높은 전압이나 전류에 노출되게 된다. 고 전압에서 사용되는 충격 전압은 저 전압 (low voltage system)에서 사용되는 충격 전압의 개념과 다소 차이점을 보인다. 고 전압에서 사용되는 충격 전압과 충격전류는 고 전압 충격의 생산과 측정동안 발생하는 특수한 경우를 설명하기 위해 도입된다. 


간략하게 이와 관련된 용어들을 정리 해보려 한다.


1. 뇌 충격전압(Lightning Impulse Voltages)


외부의 과전압에 의해서 고 전압 장비에 전기적 강도가 전해 질 수 있는데 이러한 원인중 하나는 벼락 또는 뢰전(lightning strokes)에 의해 나타난다. 그리고 이러한 뇌 충격전압은 full lightning impulse voltage, 와 chopped lightning impulse voltage로 구분된다.


2. 개폐 충격전압(Switching Impulse Voltage)


이름 그대로 스위칭 동작으로 인해 발생하는 충격 전압이다. 스위치의 동작으로 인해 고 전압 장비 내부에 과 전압이 흘러 들게 되고 이로 인해 이러한 고 전압 장비들은 강한 스트레스(응력)에 노출되게 된다.


3. 지수형태의 충격 전류(Exponential Impulse Currents)


지수형태의 충격 전류는 상대적으로 매우 빠른 형태이며 지수함수 형태로 peak value까지 빠르게 도달한뒤 상대적으로 느린 속도로 0의 값으로 내려 오게 된다.

4. 사각 충격 전류(Rectangular Impulse Currents)


이름 그대로 사각형 형태의 충격전류를 보여주기 때문에 장시간 충격전류라고도 불린다.


충격 전압 테스트를 위한 전압 생성기


충격 전류 테스트를 위한 전류 생성기



출처: K. Schon, High Impulse Voltage and Current Measurement Techniques. 2013.





고전압 절연 시스템에서 공간전하 축적의 효과(The Effect of Space Charge Accumulation in High Voltage Insulation Systems )


HVDC(High Voltage Direct-current)는 현재 배전시스템에 있어서 매우 중요한 주제이다. 특히, 경제적 그리고 환경적 요인이 많이 작용하며 현재 AC 시스템에 의해 운용되는 장거리 송전시스템을 DC시스템으로 대체하기 위해서 HVDC의 연구는 지속적으로 필요하다. DC 전원은 AC 전원의 경우보다 절연 물질이 다르게 대전(charged)되게 된다. 이러한 이유로, 절연체의 대전(charging)을 분석하기 위해 특별한 측정방법을 사용하여야 한다(e.g. 공간전하 측정, 부분방전 측정 등). 


만약 전계(electric field)가 절연물체와 상호작용관계에 있다면, 분극화(polarization) 매커니즘이 시작되게 된다. 구속 대전 캐리어(bound charge carriers: fast polarization, relaxing polarization)과 자유 대전 캐리어(free charge carrier: migration polarization, space charge polarization)들은 이러한 매커니즘에 기여될 수 있다.


A) 절연체에서의 전자와 이온의 이동(Migration of Electrons and Ions in Dielectrics)


바운드 그리고 자유 전하(bound and free charge) 모두 분극화 (polarization)과정에 기여한다. 공간전하의 분배는 자유 전하의 흐름 또는 갇힌 전하(trapped charge, 갇히기 전에는 자유상태)에 의해 영향을 받을 수 있다. 자유 대전 캐리어는 갇힌 전하의 비해서 절연체를 대전시킴에 기여하는 바가 상대적으로 훨씩 적다. 그리고 갇힌 전자는 절연 재료 내부에 존재하게 된다. 그리고 대전캐리어들(electron, holes, ions)은 다른 방식으로 재료에 주입이 될 수 있다. 대부분의 경우들은 캐소드쪽에서의 주입 또는 애노드로 부터의 추출(전공 인젝션)들이 이에 해당한다. 또한 이러한 상황들은 쇼트키 효과를 통해 설명될 수 있다(Schottky effect). 대전 캐리어들은 절연체나 전극의 사이의 potential barrier를 극복하게 된다. 공간전하의 분배는 적용된 전압에 극성에 의지 할 뿐만 아니라, 전극의 재료, 절연체의 내부구조에도 의지하게 된다. 대전 캐리어의 주입의 관한 다음 선택지는 열 방출이나 절연체 내부 기포에서 발생하는 부분방전에 의한 주입이 있다. 분극 이동의 효과는 또한  ε’ (-)/f (Hz) 특성(Figure 1)에 의해 확인 될 수 있다(절연체 분광학 이용: the dielectric spectroscopy).


B) 절연체에서의 공간전하(Space Charge Profiles in Dielectrics)


전기적 절연체에서 공간전하는 3가지로 분류 될 수 있다(homo-space charge/hetero-space charge/internal-space charge).


  • 비균일 공간전하(Hetero-space charge): (+)공간전하라고도 불리며 종종 고형 절연체에서 발생한다. 대부분의 경우들이 내부 구조에서 전하와 결합한 경우 이다. 이러한 현상은 캐소드에서 방출하는 전자에 비해 훨씬 더 이동성이 좋은 전자에 의해 유발된다. 그 결과, (+)극성의 전하가 캐소드쪽에 축적되는 현상이 벌어지게 된다. 이런 종류의 공간 전하는 폴리에틸렌(PE:polyethylene) 같은 중합체(고분자자) 또는 polyethylene terephthalate(PET), polyethylene naphthalate (PEN) 같은 물질에서 일어난다.

  • 균일 공간전하(Homo-space charge): (-) 공간 전하라고도 불리며, 캐소드로 부터의 빠른 전자 주입으로 인해 발생한다. 이러한 주입은 절연체 내부와 같은 극성의 전극 주변에서 전하 캐리어의 양을 증가시키며 XLPE(cross-linked polyethylene)같은 물질에서 일어나게 된다. 

  • 내부 구조의 공간전하(Space charge in inner structure):  크리스탈 래티스 구조의 결함에서 갇힌 전하(trapping of charge)에 의해 발생할 수 있다. 또한 무정형 (amorphous), 다결정질(polycrystalline) 재료안의 트랩에서도 발생 한다. 



C) 공간전하 측정 원리(Space Charge Measurement Principles)


절연체 내부에서의 공간전하의 특성을 조사하기 위해 몇 가지 모니터링 방법이 사용된다. 초기에는 이를 측정하기 위해 절연체를 얇은 면으로 절단하였다. 하지만, 현재의 측정 기술을 양적인 측면에서 훨씬 더 발전되었드며, 가장 널리 쓰이는 방식은 다음과 같다.


  • LIPP: laser-induced pressure pulse

  • PWP: pulse pressure wave

  • TP: thermal pulse

  • PEA: pulsed electroacoustic


공간전하 축적의 효과는 전계 분배 강도 E (kV/mm), 에너지 밀도 ηE (J/m^3),  분극화 polarization p (C/m^3)로 나타내어 진다.


장 시간의 HVDC 사용은 절연체를 대전(charging) 시키며, 또한 절연체 내부구조에서 공간 전하를 형성한다. 이러한 공간전하의 축적은 전계의 분배(the distribution of electric field)에 영향을 미칠 뿐만 아니라, 분극화나 에너지 밀도에도 영향을 끼치게 된다.

비균일 공간전하 프로필(hetero- space charge profile)로부터 절연체의 노쇠화가 더 크게 영향을 받으며 즉, 전극 주변의 전계의 강도가 증가하는 현상을 보이게 된다.  

출처: J. Hornak, P. Trnka, P. Totzauer, and M. Gutten, “The effect of space charge accumulation in high voltage insulation systems,” Proc. 2017 18th Int. Sci. Conf. Electr. Power Eng. EPE 2017, pp. 1–5, 2017.




HVDC Converter Transformer


HVDC 마켓의 지속적인 성장은 HVDC 송전 시스템의 있어서 전압과 송전 용량을 꾸준히 증가 시킬수 있게 하였다. 현재 HVDC converter transformer 800kV의 전압 레벨까지 도달하였으나, Siemens(지멘스) 회사는 1100kV 그리고 587MW 수준의 트랜스포머를 제작하여 중국 1100KV HVDC 프로젝트에 참여했다.


Converter transformer는 삼상(three-phase) AC 네트워크와 converter 벨브(vavles)를 연결한다. Converter transformer는 HVDC 시스템에서 매우 중요한 부분을 담당하고 있으며 이것이 가지고 있는 기능은 다음과 같다.


  • AC 네트워크와 converter valves 사이의 전력의 전달

  • 전압 전환에 있어서의 전압 레벨 보조

  • AC 와 DC 시스템 사이의 전류적 독립성

  • 폴트(fault) 전류를 최소화 하기위한 short-circuit current 임피던스의 공급

ABB converter transformer(https://new.abb.com/products/transformers/power/hvdc-converter)


Converter Transformer 의 구성요소


A) 코어와 와인딩(Core and Winding)

(https://sari-energy.org/oldsite/PageFiles/What_We_Do/activities/HVDC_Training/Presentations/Day_3/1.Converter_Transformer.pdf)


Converter Transformer의 동작원리는 자속 (magnetic flux)를 기반으로 한다. 코어 타입은 steel로 라미네이트 되어 있으며 converter transformer에 현재 널리 사용된다. 위의 그림은 전형적인 코어와 와인딩 구조 (single-phase three winding 컨버터 트랜스포머)를 보여 주고 있다. 벨브 와인딩(Valve winding)은 코어에 가장 가까우며 라인 와인딩(line winding)으로 둘러 쌓여 있으며 바깥 쪽 레이어는 탭 와인딩(tap winding)으로 구성된다. 왼쪽 편의 벨브 와인딩은 Y connection (the upper bridge 용) 이며 오른쪽 벨브 와인딩은 Delta connection(the lower bridge 용) 으로 이루어진다. 컨버터 트랜스포머의 전형적인 절연 물질은 오일과 섬유소 절연체가 많이 사용된다. 


전도체들은 turn사이에서 절연을 위해 섬유소 종이로 감겨 있으며, 섬유소 보드(board)는 기계적인 서포트 뿐만 아니라 절연 능력의 향상을위해 배치된다. 섬유소 절연과 함께 있는 전체적인 와인딩은 절연유(insulating oil)에 담가지게 된다. 그 이유는 고 전압의 대한 절연 뿐만아니라 트랜스포머 내부에서 발생되는 열을 자연스레 또는 강제로 발산시키기 위함이다.


B) 부싱(Bushing)


부싱은 컨버터 트랜스포머 위쪽에 확연히 눈에 띄게 자리잡고 있으며, 큰 전력의 이동에 관여한다. 라인쪽(line side)의 부싱은 AC 기술을 기반으로 디자인 되어있으며 반면에 HVDC 부싱은 Valve 사이드 쪽에 항상 존재하며, LCC-HVDC 기술의 핵심적인 역할을 하게 된다. 현재, Oil-impregnated paper 와 resin-impregnated paper의 기술이 주로 HVDC 부싱에 적용된다. 


C) 쿨링 시스템(Cooling System)


컨버터 트랜스포머의 쿨링 시스템은 보통의 큰 규모 트랜스포머(오일 덕트, 파이프, 라디에이터로 구성된)의 쿨링 시스템과 유사하다.


D) 오일 탱크(Oil Tank)


접지된 오일탱크는 컨버터 트랜스포머의 내부 고전압 요소들을 커버한다. 


위의 열거된 요소들을 이외에, 탭 차저(tap charger), 모니터링 시스템, 보호 장비들이 컨버터 트랜스포머 구성에 포함된다.



컨버터 트랜스포머의 구조(Configuration of Converter Transformers)


정격 전력(power rating)과 운송 제한(transportation limitation)에 따라서 컨버터 트랜스포머는 4가지의 구조로 나누어 질 수 있다.

컨버터 벨브(valves)로 전력을 전달하기 위해서는, 컨버터 트랜스포머는 three phase 그리고 에 관한 더블 valve 와이딩을 포함한 단일 유닛부터 sing phase와 single valve 를 포함한 6개의 분리된 유닛까지의 범위까지 설정될 수 있다. 일반적으로, 더 큰 규모의 HVDC 프로젝트는 더 큰 규모의 정격전압(Power Rating)을 필요로 한다. 그리고, 이러한 큰 규모의 HVDC 프로젝트는 더 많은 분리된 컨버터 트랜스포머를 필요로 하게 된다.



컨버터 트랜스포머의 절연 (Insulation in Converter Transformer)


컨버터 벨브의 연결로 인해서, DC 스트레스는 컨버터 트랜스포머의 벨브 와인딩으로 유입되게 된다. ABB리포트에 따르면 upper bridge에 연결되는 컨버터 트랜스포머 벨브와인딩의 DC 요소들은 HVDC 전압 레벨의 3/4에 해당하게 되고 lower converter transformer의 벨브와인딩에는 1/4의 HVDC 전압레벨이 해당하게 된다. 주어진 주파수의 AC stress 에서는, 전계의 분배는 절연 물질의 유전율(permittivity)에 의해 결정된다.


오일이나 종이의 유전율(permittivity)의 변화는 크게 잘 일어나지 않는다. 그리고 주어진 주파수에서 오일과 종이사이의 유전율의 차이또한 그렇게 크지 않다.(오일: 2.2/oil-impregnated kraft paper: 3.5). 그러므로, AC 트랜스포머에서 전계의 분배는 매우 잘 예측되며 컨틀롤 하기도 용이하다.


DC stress에 관련해서는 전계의 분해(the field distribution)은 저항력(resistivity)에 의존하게 된다. 저항력(resistivity)의 값은 내부 또는 외부의 상황 즉, 온도, 습도, 노쇠화에 관련해서 매우 민감하다. 결론적으로, DC 응력이 절연시스템에 유입되게 되면, 전계 분배는 불균형해지며 컨트롤 하기 어려워진다. 이러한 현상은, 컨버터 트랜스포머의 단점으로써 계속해서 극복되어야 할 부분이다. 또한 이러한 DC stress가 주는 현상은 절연체에서의 공간전하 축적으로 이어질 수 있다. 







출처: 

[1]https://sari-energy.org/oldsite/PageFiles/What_We_Do/activities/HVDC_Training/Presentations/Day_3/1.Converter_Transformer.pdf

[2]A. Carlson, “Specific Requirements on Hvdc Converter Transformers.Pdf,” Ludvika, Sweden.

약 100년전 "war of currents"라는 AC와 DC 파워 시스템이 앞으로의 전력 보급방식을 두고 전쟁 아닌 전쟁을 벌인적이 있었다(DC: 토마스 에디슨 vs AC: 니콜라 테슬라). 결국 AC 시스템의 승리로 끝나게 되고 이 방식은 현재 대분의 전력 공급 시스템으로 자리 잡게 되었다. 하지만, 기술의 발전, 특히 반도체의 급격한 성장으로 인해 고 전압(High Voltage) , 특히 직류 고 전압(HVDC)의 이용이 가능하게 되었으며 이미 많은 나라에서 상용화에 돌입했다. 


AC 시스템의 비해서 DC 시스템이 가지는 장점들은 다음과 같다.


  • 장거리 송신에 있어서 전력 손실이 적다.

AC 시스템의 비해서 송전 라인의 수가 적은편이다(HVDC 시스템에서는 오직 두개의 송전 라인만을 필요로 한다). 또한 리엑티브(reactive) 전류와 스킨 효과(skin effect)가 존재하지 않음으로 전력손실이 상대적으로 적다.


  • 장거리 송신에 있어서 비용이 AC 시스템의 비해서 저렴하다.

AC 시스템의 비해서 변전소 건설비용은 비싼편이지만, 그래도 송전탑의 폭이 좁은 편이며 500~800km 이상의 거리를 송전할때는 오히려 HVDC 시스템이 HVAC 시스템보다 비용이 저렴한 편이다.


        AC vs DC 비용 비교

(https://www.quora.com/Up-to-what-distance-is-DC-transmission-efficient)


  • 안정성이나 동기화관련 문제가 없다.

우선 DC 시스템은 Phase angle (위상)이 존재 하지 않기 때문에 매우 안정적이며 그리고 서로 다른 주파수를 가지는 두 AC 시스템 사이를 연결함에 있어서도 문제가 없다.


  • 더 큰 용량의 short-circuit capacity

두개의 AC 시스템이 AC 방식으로 연결이 된다면 short circuit capacity 는 증가하게 되고 추가적인 설비의 업그레이드가 필요하게 된다. (e.g. 서킷브레이커). 하지만, DC 링크는 기존의 AC 시스템의 변화 없이 바로 연결이 가능하기 때문에 추가 업그레이드가 필요 없다.


현재 HVDC 시스템이 제공하는 서비스는 LCC-HVDC(Line-commutated HVDC)와 VSC-HVDC(Voltage-source Converter HVDC) 두개의 시스템이다. LCC HVDC 시스템은 장거리 대용량의 전력 송전을 위해 사용되며 VSC-HVDC시스템은 off-shore(해안가) 에서 발생하는 풍력 또는 외곽 지역과 관련되서 사용된다.




오염된 절연체의 섬락현상의 발생은 매우 복잡한 과정이며 우연에 의해서도 일어날 가능성이 있다. 따라서 몇가지 설명이 가능한 프로세스들을 예를 들어보자.

A) 건조 밴드의 형성 (Formation of dry bands)



Figure 1.6-4a 는 균일 오염 전도층 (σs)를 가지는 평면 구조를 보여준다. 이 경우 누수 전류가 흐르게 되고 이러한 누수 전류는 선형의 전위 분배를 발생시킨다. 이러한 현상은 특정한 양의 건조 오염층으로 이끌게 되고 figure 1.6-4b 처럼 부분적으로 넒은 밴드 현상을 유발 할 수 있다. 이러한 건조 밴드층에서는 다른 σs 값은 갖게되고 전류는 일시적으로 매우 작아지게 된다. 마지막으로, figure 1.6-4c 처럼 각각의 밴드는 부분적 아크(불꽃)로 인해 브릿지 현상(절연체가 전도체가 되는 현상)을 겪게되며, 결국에 완전한 섬락 현상으로 유도하게 된다.

이 경우는 만약 표면이 완전히 건조한 경우 방지되게 되고 다시 한번 선형 전위 분배를 발생할때 위험 레벨보다 훨씬 더 낮은 전류의 값을 갖게 된다. 이러한 현상은 마치 균일한 건조와 연속적인 부분 아크사이의 경쟁처럼 여겨질 수 있다.

B) 오염모델을 통한 안정성 고려(Stability considerations using the contamination model)

Figure 16.5에 따르면, 건조 밴드와 오염층을 보유한 절연체는 직렬연결의 아크(arc) 경로 길이 x 와 '균일 저항층/단위길이'의 저항에 의해 대표된다 R'=R'(I). 이 모델과 함께 연소된 아크의 연장이 또는 소멸이 조사 되어질 수 있다.

총 전압 U는 아크와 오염층을 가로지르는 부분전압으로 구성된다. 아크 전계 강도 Eb=Eb(I) 와 관련해서

$U=E_bx+IR"\left(s-x\right)$U=Ebx+IR(sx)

방전이 소멸되는 조건에서는, 전압은 아크가 가지는 성향을 기초로한 아크 확장에 의해 얻어진다. 그리고 Eb(I)는 더 저항층읠 가로지르는 공급체로부터 사용가능한 전계보다 훨씬 더 빨리 증가하게 되는것을 추정할 수 있다.

$\frac{\partial \left(E_bx\right)}{\partial x}>\frac{\partial \left(U-IR"\left(s-x\right)\right)}{\partial x}$(Ebx)x>(UIR(sx))x

추가적으로 추정될 수 있는것은, 아크 전압은 오직 작의 부분의 전압 U를 형성하며 전류 I는 x에 관해서 독립적이게 된다 (소멸 조건에서).

$E_b>IR"$Eb>IR

이후, 만약 특정 중요 전류 값(Ik)을 초과 했을 경우 아크의 순방향 성장이 반드시 나타나게 된다.

$I_k=\frac{E_b}{R"}$Ik=EbR



위의 그림은 아크의 순방향 성장과 아크의 소멸 경계면에 관한 다이어그램이다. 이 경우는 Eb와 R'가 전류가 증가할때 감소한다고 가정된다. 빗금이 쳐진 영역에서는 아크는 최종적으로 완전한 섬락현상으로 발전되게 된다. 이 경우 대략적인 Ik 의 값은 다음과 같다.

$E_b=b\cdot I^{-n}$Eb=b·In
$R"\sim const\ 라고\ 가정한다면$R~const  
$I_k=\left(\frac{b}{R"}\right)^{\frac{1}{n+1}}\sim \sigma _s^{\frac{1}{n+`}}$Ik=(bR)1n+1~σ1n+`s

다시 말하면 특정 최대 허용전류가 존재한다면 섬락현상 또한 존재가 가능하다. 실제로, 오염층과 관련된 절연 실패에 관해서, 섬락현상 이전에 최대 누수 전류는 오염형태에 상당히 독립적인 측정값이다.




Figure 1.6-7은 누수 전류가 완전한 섬락현상으로 발전되는 과정을 보여주며 figure 1.6-4의 아이디어를 기반으로 하고 있다. 하지만 더 중요한것은 Ik에 상응하는 Uk의 값이며 이 값은 만약 아크(arc)의 길이가 중요 길이 보다 훨씬 짧다고 (x≪s) 가정되었을때 구할 수 있다.



절연체 길이 s에 관한 아크 전압의 선형적 의존성은 이미 고전압에 관하여 증명되었다. 지수 n/n+1에 관하여 0.2~0.6사이의 값들이 얻어지게 된다.

처음의 대략적인 값은 심플하게 n=1을 통해 얻어진다. 즉, 다음과 같다.



비록 이러한 복합적인 시뮬레이션 모델이 실제 조건들보다 훨씬 나을지라도, 실제적인 요소들 (즉, 실험값)들을 간과해서는 안된다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


고 전압 시설들은 가끔 가스가 있는 환경에 절연체를 포함한 경우가 있으며 이 경우 플래시오버(섬락)에 의해 stress를 받게 된다. 만약 오염된 레이어가 절연체의 표면에서 발달하게 된다면, 절연체의 전계 강도는 급격하게 감소하게 된다. 이러한 현상은 오버헤드라인, 야외 스위칭 스테이션 등 여러 장소에서 발생 가능하다. 그리고, 장기적은 측면에서 대기 오염 현상은 고 전압 네트워크의 안정성에 아주 큰 영향을 끼칠 수 있다.

오염레이어의 발달과 효과(Development and effect of contamination layers)

고형의 물질과 가스화된 물질사이의 경계면에서는 둘의 다른 물리적 매커니즘에 의해 응축이나 흡수같은 현상이 일어나게 된다. 추가로 공기중에서는, 절연체는 먼지 분자들의 축적에 의해 오염된 레이어를 형성할 수 밖에 없다. 이러한 현상은 일반적으로 질적측면의 설명(quantitative description)이 힘들다. 따라서 이 현상을 설명하기 위해서는 조사와 실험을 통해 접근하여야 한다.

A) 수분 레이어(Moisture layer)

대기중의 공기는 항상 상당한 양의 수분을 포함하고 있다. 깨끗한 실험조건에서 물분자의 퇴적(또는 축적)은 대게 절연체 표면에서 일어나게 되고 humidity value F>50%이상일때 섬락전압 (Ud)의 감소를 이끌어 낸다(Fig. 1.6-1). 즉 낮아진 섬락 전압으로 인해 섬락(flashover)의 현상이 나타날 가능성이 높다.



이러한 현상의 원인은 절연체 표면의 물의 단일분자 필름 형성 (the formation of a mono-molecular film)때문이다. 심지어 주변 공기의 포화 습도 보다 낮은 상황이더라도 동일하다. 따라서 이러한 섬락 전압(the flashover voltage)를 줄이기 위해서는 절연체 표면의 마감 그리고 전압의 형태등 여러 사항들을 동시에 고려하여야 한다. 야외의 절연체에서는 화학 결함하는 수분층이 비, 안개, 또는 이슬에 의해 과냉각된 절연체에 발생할 수 있다(특히, 이른 아침시간에 발생할 가능성이 높다)

섬락전압에 있어서 수분이 주는 영향은 절연체로 쓰이는 SF6가스 절연 시스템에 있어서 또한 중요하게 여겨진다. 다시 말하면, 가스를 사용하는 절연 시스템은 고체 표면에 생기는 수분, 즉 이슬점에 도달하지 않기 위해 충분히 건조한 상태를 유지하여야 한다.

B) 전도성 오염층(Conducting contamination layers)

대기중에서는 먼지같은 불순물들이 물체에 표면에 쌓이는 경향이 있다. 이러한 오염층(the contamination layer)이 절연체에 미미하게 쌓이면서 건조한 상태를 유지한다면 섬락전압(flashover voltage)에 주는 영향은 크지 않다. 하지만, 만약 이러한 오염층이 충분히 쌓이면서 수분을 머금게 된다면 절연체의 전기전 강도 감소에 아주 큰영향을 주게 된다.

크게 오염된 층이 다른 형태의 전압에 주는 영향은 다음과 같다.



오염층이 각각 다른전압에 미치는 감소율

오염된 절연체의 행동은 교류 또는 직류 전압하에서 동작 스트레스(the operating stress)에 아주 큰 영향을 미친다.

다음 3가지의 오염이 공통적으로 일어난다.

1. 염분 안개 오염(salt fog pollution)은 주로 해안가 근처에서 일어나며 수 Km의 내륙까지 전달 될 수 있다. 실생활에 비슷한 예로는 겨울철 도로에 뿌리는 염분의 물질 (보통, 염화 칼슘)의 효과와 비슷한다.

2. 산업 공해 또한 이에 해당하는데, 잘 알려진대로 이러한 산업 공해는 인근 지역의 화력 발전소, 석탄 발전소, 시멘트 공장등 으로부터 발생한다. 이러한 산업 먼지들은 보통 비활성 먼지이며 염분과 섞여있다. 초기에는 이러한 먼지들이 건조한 상태지만, 후에 수분과 접촉하게 되면 전해질적인 전도성을 같게 된다. 또한 종종 이러한 전도성 오염층은 수분에서의 산성 형태의 가스(e.g. SO2)에 의해 발생하기도 한다.

3. 세번째의 경우는 사막 오염인데, 이 경우는 사막 부근에서 발생한 먼지가 절연체 주변에 쌓이게 되는 경우이다. 이렇게 발생된 먼지는 바람에 의해 날리게 되며 염려 되는 지역에 먼지층을 쌓게 된다. 예를들면 절연체 그늘막에 안쪽이나 뒤쪽 처럼 접근 하기 힘든 부분에 쌓이게 된다.

이 모든 종류의 전도성 오염층은 절연체 표면에 위차하게 되고 누수 전류 I를 적용된 전압과 함께 포함하게 된다.




$R=\frac{1}{\sigma _s}\cdot \frac{1}{\pi }\int _0^{s_k}\frac{dx}{D\left(x\right)}=\frac{1}{\sigma _s}K_f$R=1σs·1πsk0dxD(x)=1σsKf
$R:\ the\ leakage\ resis\tan ce$R: the leakage resistance
$s_k:\ the\ creepage\ path\ length$sk: the creepage path length
$\sigma _s:\ cons\tan t\ layer\ conductivity$σs: constant layer conductivity
$K_f:\ form\ factor\ \ \left(10\sim 30범위\right)$Kf: form factor  (10~30)



위의 그림에서 보여지듯이 인공 그리고 자연적인 오염에서의 절연체를 조사할때 δs (layer conductivity)는 유용한 측정 방식이 될 수 있음을 보여준다(교류전압 하에서).

직류 전압조건하에서는, 오염층의 형성은 먼지 분자에서 작용하는 정전기적 힘에 의해 아주 큰 영향을 받는다. 전계는 매우 불규칙적인 오염을 이끌어 낼 수 있으며 또한 층 전도성의 불균일함을 가져올 수 있다. 다시 말하자면, 교류 전압에 비해 더 큰 섬락 전압(the flashover voltage)의 감소를 가져오게 된다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


절연유가 적용되는 대부분의 경우에서는 더 많은 고려사항들이 존재하게 된다. 예를들어 절연유는 트랜스포머의 와인딩과 코어의 열을 식히는데 이용되고 또한, 서킷브레이커의 아크현상(열이나 불꽃을 나타내는 현상)을 끄기 위해서도 쓰인다. 또한, 내장된 캐패시터에서, 절연유는 절연지의 절연 상수를 증가 시키는 역할을 한다.

절연유의 사용은 기술적인 측면에서 기체 그리고 고체 절연 기술과는 조금 다르다. 액체의 절연은 불순물에의해 상당한 영향을 받으며 수명 또한 공간 전하(space charge)의 영향을 크게 받는다. 절연유의 절연파괴는 확실하게 통일된 이론은 없으므로 여러가지 사항을 복합적으로 고려하여야 한다.

A) 절연유 기술적 구조의 전기적 강도(Electric strength of technical configuration with insulating liquids)

고 전압 기술에서는, 미네랄 오일이 절연물질로써 지배적이다. 즉, 절연 지지대(소프트 페이퍼, 프레스보드 등) 부근에서 절연 활로를 연다. 미네랄 오일은 매우 낮은 점성을 가지고 있어서, 트랜스포머의 절연 오일로써 많이 쓰인다. 이러한 점성도는 온도에 매우 의존적이기때문에 다른 적합한 증류액과 섞으므로써 냉각이나 오일을 머금게(침투) 함에 있어서 용이하다.

미네랄 오일은 천연 오일로 부터 추출되며 이러한 절연유는 각기 다른 성질을 가지는 여러 탄화수소의 혼합체이다. 대형의 기술 시스템(트랜스포머 같은)이나 대기와 접촉이 일어나는 몇몇에 경우에 절연유는 불순물이 용해된 가스나 액체의 형태로 가지고 있게 된다. 뿐만아니라, 전도가 가능한 입자나 전도가 불가능한 입자(fibre pieces, sludge) 또한 포함하게 된다.

많은 실험들이 보여주기를 이러한 불순물의 존재는 절연파괴의 특성에 있어서 이상적으로 순수 절연액에 비해서많은 영향을 준다. 사실, 액화된 가스들은 순수 절연액을 대표하는데, 매우 낮은 온도의 질소액이 이에 해당한다(LN2). 액화 헬륨 또한 저온 기술에서 사용될 가능성이 있다.

합성 절연액인 chlorinated diphenyls (염소처리된 디페닐)은 파워 캐패시터에서 절연종이가 머금게 하기 위해 (함침)쓰인다. 미네랄 오일과 비교하였을때, chlorinated diphenyls은 거의 2배 더 큰 절연 상수를 가지고 있었다.

추가적 이점으로는, 불이 잘 붙지 않으며, 예전에는 배전(distribution) 트랜스포머 안쪽에 사용되기에 적합 했다. 하지만 오늘 날에는, 에폭시 레신(epoxy resins)과 함께 건식 트랜스포머에 사용된다.

아래 표는 몇몇의 절연액의 특성을 포함하고 있다.



불순물에 대한 의존성을 제외하고, 전기적 강도는 또한 다른 요소들의 영향을 받는데 특히, 압력과 스트레스(stress duration) 작용 기간이 이 요소들중 하나에 해당한다. 충동 전압의 스트레스작용 동안, 절연 파괴 전계 강도는 많은 영향을 받게 된다. 균일 전계에서의 절연체는 아마 최대 Ed=200 kV/cm 의 절연 파괴 전계를 가진다. 트랜스포머안에 전극의 충동 전압-시간 커브(Figure 1.4-1)는 스트레스 작용효과에 관하여 생각해 보게 만든다.



불순물을 포함한 절연액에 관하여 전형적인 절연 파괴 요건은 큰 확산과 불규칙적인 선-방전(pre-discharge)의 발생 빈도이다(균일 전계 상태도 포함). 더욱이, 순수 액체 간극들에서는(in pure liquid gaps), 절연 파괴는 상당한 자가 회복 작용(self-healing)과 함께 발생한다.



위의 그래프는 절연파괴 전계 강도 Ed의 측정결과 값과 50Hz에서의 분산 요소 tanδ 를 수분 포함 함수 v에 관하여 나타내어졌다. v=50*10-6 을 초과한 지점에서의 Ed 의 감소는 용액이 유화되는 변천을 겪는데 영향을 끼치게 된다.

200kV/cm의 절연파괴 전계 강도에서는 잔존하는 수분 함량은 v<10-5 이어야 한다. 용해된 수분 기포와 대조적으로, 용해된 가스는 보통 절연액에 전기적 강도에 큰 영향을 미치지 않는다 (산소에 의한 노쇠화 과정은 별개). 그러나, 만약 평형생태를 벗어났을때 과포화 상태는 매우 중요한 부분이 될 수 있다. 다시말하면, 용해된 가스들이 아주 작은 버블형태로 나타나게 되는데 이러한 버블들은 기계적 진동 (강제 냉각 순환 등)이나 고 전계 강도에 의해 발생된다.

액체의 절연 재료들은 함침제(impregnants)로 캐패시터의 절연체, 소프트 페이퍼, 그리고 트랜스포머의 프레스 보드에 쓰인다. 뿐만 아니라, 오일이 함유된 페이퍼 케이블에도 적용 가능하다. 그리고, 액체의 절연 재료들은 매우 높은 전기적 강도에 도달이 가능하지만, 효과적인 대류 냉각(convection cooling) 측면에서 비용적으로 효율적이지 못하다.

다음의 표는 각각의 물질들이 20oC에서 가지고 있는 특성들을 보여준다.



위의 표에서 보여지는 혼합된 절연체들은 매우 강한 전기적 강도를 가지며 약 100kV/cm 또는 그 이상의 전계 강도까지 허용이 가능하다. 아주 짧은 순간동안은, 파괴 전계 강도 Ed의 스트레스 값이 약 최대 1MV/cm 까지 측정될 수 있다. 그러나 특히, 매우 높은 주변 온도 상황에서는 열에 의한 절연 파괴상황을 반드시 고려하여야한다. 추가로, 극도록 짧은 순간같은 특이한 경우에는, 심지어 수분또한 매우 높은 절연파괴 전계 강도를 보유하게 된다.

실험적 조건에 따라서, 약 mm 단위의 공간에 대해서 100~500kV/cm의 전계 강도 값을 가질 수 있다 (※작용 시간은 10μs 를 넘지 않는다). 절연용액을 기술적 측면으로 바라본다면, 전기적 강도는 압력에 비례해 매우 급격하게 증가한다. 이러한 특성을 고려해 본다면 매우 높은 절연 상수 εr=약 80을 가지고 있는 물 또한 플래시오버(flash over)의 위험성에 관해서 잘 들어 맞는다고 볼 수 있다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


절연 물질에서는, 절연 손실 Pdiel이 발생하는데 이러한 절연 손실에는 전도, 극성, 그리고 이온화 손실로 구성되어있다. 이러한 손실들은 절연체의 온도를 증가시킬 뿐만 아니라 절연체를 스스로를 온도의 대한 의존성을 부여하게 된다. 절연체 손실이 온도와 함께 급격히 증가하는 영역에서는, 고체 절연체의 과열 같은 위험이 존재하며 이러한 과열 문제는 절연 파괴로 이어질 수 있다. 이러한 열에 관한 기초적인 절연파괴 메커니즘을 thermal breakdown이라고 하며 1922년에 K.W. Wanger에 의해 설명되었다.

A) 절연 손실의 온도 의존성(Temperature dependence of dielectric losses)

교류 전계에서의 구체적인 절연 손실은 다음과 같다

$P_{diel}^'=E^2\varpi \varepsilon _0\varepsilon _r\tan \delta $Pdiel=E2ϖϵ0ϵrtanδ

손실 요인 εrtanδ 절연체의 절연 손실의 크기가 없는 값이며 그 범위는 약 10-3~10-1 정도이다.

직류 전계에서의 수식은 다음과 같다.

$P_{diel}^'=E^2k$Pdiel=E2k

위의 두 경우 모두, 온도의 대한 의존도는 다음과 같이 표현될 가능성이 있다.

$P_{diel}^'=E^2p\left(T\right)$Pdiel=E2p(T)

다시 말하면,

$교류\ 전압과\ 관련해서:\ P\left(T\right)=E^2\varpi \varepsilon _0\varepsilon _r\tan \delta $  : P(T)=E2ϖϵ0ϵrtanδ
$직류\ 전압과\ 관련해서:\ P\left(T\right)=k$  : P(T)=k

온도 의존도:

$P\left(T\right)=p_0e^{\sigma \left(T-T_0\right)}$P(T)=p0eσ(TT0)
$T_0\ and\ p_0\ :\ reference\ quantities$T0 and p0 : reference quantities
$\sigma :\ the\ loss\ increase$σ: the loss increase

B) 열에 의한 절연파괴 모델(Model to describe thermal breakdown)



Figure 1.3-9에서는 절연체의 온도 T 와 구체적인 절연 손실 Pdiel은 부분적으로 일정하다고 고려된다. 전극 1과 2사이의 쿨링 파워 Pab 와 함께하는 열전도가 주변 온도 Tu에 대해서 비례한다고 생각해보면

$P_{ab}\sim \left(T-T_u\right)$Pab~(TTu)

안정적인 동작 지점은 반드시 다음 조건들을 만족시켜야 한다(Fig 1.3-9b).

$P_{ab}=P_{diel}\ as\ a\ prerequisite\ for\ static\ conditions$Pab=Pdiel as a prerequisite for static conditions
$\frac{dP_{ab}}{dT}>\frac{dP_{diel}}{dT}\ as\ a\ prerequisite\ for\ stability$dPabdT>dPdieldT as a prerequisite for stability

만약 안정적이 동작 지점이 존재하지 않는다면, 열에 의한 절연파괴가 시작된다. 뚜렷하게 보이듯이 교차점 A는 안정적인 동작 지점인 반면, 교차점 B는 불안정한 포인트이다. 주변 온도 Tu를 증가시키거나 전압 U를 증가시킴으로써, 포인트 A와 B는 마지막에 C 지점에서 합쳐지게 된다. 상응하는 전압은 중요한 전압 Uk로 표시되었으며 이는 열에 의한 절연파괴 전압이다.

질적인 측면에서 위에 Figure는 절연체 내에서 부분적으로 일정한 온도라고 가정되었다. 그러나 절연파괴 수행에 있어서 양적인 측면은, 절연체에서의 온도 분배 현상은 반드시 고려될 사항이다.



균일 전계에서 향상된 모델은 Figure 1.3-10에 보인다. 이 모델은 전극 1, 2의 주변 온도가 일정하다고 가정되었다. 다시 말하자면, 열전도는 오직 x 방향으로 만 향하고 절연체의 열전도성 λ은 일정하다고 가정되었다. 최대 온도 Tm은 위치 x=0에서의 경계 조건은 위의 수식과 같다.

정적인 케이스에서는, 열전도에 의해 전달되는 전력 각각의 볼륨 요소는 다음과 같다.

$P_{ab}^'=-div\lambda gradT$Pab=divλgradT
$must\ be\ eaqul\ to\ the\ power\ input\ P_{diel}^'$must be eaqul to the power input Pdiel

수식 유도과정은 생략하고 전압과 최대 온도의 관한 수식은 다음과 같이 표현된다.

$U=2\sqrt{\frac{2\lambda }{p_0\sigma }}\frac{\cosh ^{-1}e^{\frac{1}{2}\sigma \left(T_m-T_0\right)}}{e^{\frac{1}{2}\sigma \left(T_m-T_0\right)}}$U=22λp0σcosh1e12σ(TmT0)e12σ(TmT0)



위의 수식은 다음과 같이 다시 나타내어질 수 있다.

$U_k=2\sqrt{2}\sqrt{\frac{\lambda }{p_0\sigma e^{\sigma \left(\left(T_u-T_0\right)\right)}}}\cdot f\left(\sigma \Delta T_m\right)\ with\ \Delta T_m=T_m-T_u$Uk=22λp0σeσ((TuT0))·f(σΔTm) with ΔTm=TmTu
$$

Function f(бΔTm)은 figure 1.3-11에 나타나있다. 물리적으로 의미 있는 답안은 명백히 증가하는 전압과 높은 값의 최대 온도를 요구하지만 최댓값의 오른쪽 영역에서는 더 이상 이 조건들이 만족 되지 않는다. 가장 높은 수치는 бΔTm ≒1.2에서 가지는 0.663 정도인데 이는 열에 의한 파괴전압 Uk 의 상응한다. 이에 우리는 다음과 같은 수식을 얻을 수 있다.

$$
$U_k=1.875\sqrt{\frac{\lambda }{p_0\sigma e^{\sigma \left(\left(T_u-T_0\right)\right)}}}with\ p_0=\omega \varepsilon _0\varepsilon _r\tan \delta _0$Uk=1.875λp0σeσ((TuT0))with p0=ωϵ0ϵrtanδ0

보통 한쪽의 쿨링판에서 일어나는 케이스에서는, x=0 부터 x=s 까지의 적분을 통해 Uk의 절반값은 얻어낼 수 있다. 놀랍게도 이 Uk의 값은 판의 두께 s에 의존하지 않는다. 하지만, 주어진 주변 온도와, 물질의 재료의 대해서는 의존적이다. 보통의 고전압 절연 물체에 대해서는, 50Hz의 주파수에서 50kV~500kV 범위의 값이 얻어진다. 하지만 주변 온도가 상승하면, Uk의 값은 급격하게 감소한다.

예를 들면, oil-paper 절연체는 50Hz 그리고 20℃에서 다음과 같은 값을 가진다.



한쪽 면의 열전도 그리고 주변 온도 20℃에 대한 Uk값은 444kV이다. 주변 온도가 100℃이라면 199kV의 값을 가지게 된다. Figure 1.3-10에 보이는 바와 같이, 전극에 존재하는 열전도율 관련 모델에서는, 서로 반대 방향을 하고 있는 전극 섹션 사이의 온도 분배는 항상 같다(화살표 방향을 의미). 따라서, 이런 현상을 global thermal breakdown이라고 일컫는다.



대조적으로, K.W. Wanger는 Figure 1.3-12에서 보이듯이 그의 조사의 따르면 그는 증가된 전도성의 얇은 경로는 절연체 안에 존재하고 방사성(radial) 열전도는 이 절연체로부터 발생한다. 이 모델을 부분적 열 절연 파괴(local thermal breakdown) 이라고 하며 다음과 같이 나타내어진다.

$U_k\sim \sqrt{s}$Uk~s

이론의 가정은 실제 경우에서 부분적으로만 들어맞는다. 그래서, 이론을 통한 계산은 근삿값만을 제시할 수밖에 없으며 열의 안정성과 관련된 실험을 완전히 대체할 수는 없다. 열 변화(정적 최대 온도)가 완전히 끝난 다음에, 동작 조건에서 고려된 전압 조건하에 오래 시간 동안 절연체를 실험할 때 이 상황은 종결될 수 있다. 즉 일정한 손실 요인의 안정성의 가능한 결과는 figure 1.3-13에서 보이며 이것은 비-파괴 결정자 Uk를 인가한다. 또한 이러한 실험들은 부싱(bushings), 파워 캐패시터, 케이블과 관련해서 매우 중요하다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


뇌 충격전압에 비해서 개폐 충격전압은 더 큰 펄스 시간을 보여준다.(250/2500μ s). 이 개폐 충격 전압은 곡면이 심한 양극성의 전극(조건: 비균일 전계, 공기 중 간극이 큰 비대칭 전극 구조) 대하여 파괴전압을 유도할 수 있기 때문에, 외부의 절연 시스템의 단위 측정에 있어서 동작 전압(operating voltage)는 400kV 또는 그 이상이 되어야 한다.




Fig 1.2-15는 양(+) 뇌 충격전압이 또는 개폐 충격전압이 적용될 때 rod-plate-gap에 작용하는 응력의 기간 동안 강도의 관해서 다른 특성들을 보여준다.

그래프에서 보이듯이 뇌 충격전압은 가장 큰 간극(s)에 도달할 때까지 5kV/cm의 기울기로 꾸준하게 증가함을 보이는 반면, 개폐 충격전압에서는 간극(s)가 5m 지점에 도달하는 순간 포화 곡선의 특성을 보여준다.

개폐 충견 전압이 crest 지점을 통과하는 시간 (Tcr≥250μs)이상 부터는 상황이 더 복잡해지는데 더 낮은 50% 즉, crest에 관한 더 긴 시간을 향해 최소 강도(더 큰 간극)가 향함에 따라, 절연 파괴 전압이 나타난다.

공기의 습도 또한 절연파괴 전압과 함께하는 방전 메커니즘에 또한 영향을 줄 수 있다. 따라서 최소 강도의 곡선 (Fig 1.2-15에서 낮은 곡선에 해당 curve 3)은 절연 시스템을 구축할 때 가장 높은 전압(the highest voltage)을 고려하여야 한다.

양(+) rod-plate 배열의 비하여 전극 구조에서 전계 강도는 비 대칭 그리고 비균일 전계의 증가와 함께 같이 증가한다. 이러한 현상은 간극 요인 (gap factor) k에 의해 다음과 같이 정의된다.

$k=\frac{U_{d-50}\ _{configuration}\ }{U_{d-50}\ _{rod\ plate}}$k=Ud50 configuration Ud50 rod plate

rod-plate-gap 은 양(+) 개폐 전압에 관해서 가장 낮은 전계 강도를 보여주기 때문에 k의 값은 1이 된다. 실제 전극 구조에서 간극 요인 (gap factor)의 값은 k=1~2. Rod-plate-gap의 50%의 파괴전압의 의존도는 간극에 달려있기 때문에 (Fig 1.2.-15) 대부분 구조의 파괴전압은 다른 값비싼 장비 필요 없이 제공된 간극 요인(gap factor)를 통해 결정할 수 있다.

양(+) 개폐 전압과 함께 응력이 적용된 Rod-plate-gap의 낮은 절연 파괴 강도의 대한 원인은 방전 원리를(discharge) 통해 고려되어야 한다 (e.g. streamer-leader mechanism).



위의 그림에서 보이듯이 이온화 전계 강도를 도달했을 경우, 존재하던 전계에서 양극성의 공간전하가 떠나가는 양(+)의 방향 쪽에서, streamer 방전은 발전되게 된다. 암 간격(dark interval) 이후에는 증가된 전압의 영향 하에서 더 강한 streamer 방전이 나타나게 된다. 그리고 충동 전류에 의해 더 뚜렷해진다.

연속적인 streamer 방전은 특정 부분에 매우 높은 전류 밀도를 유발하는데 이 특정 부분은 열 브러시 방전(thermal brush discharge)가 형성되는 부분이고 이 열 브러시 방전은 마지막에는 지속적인 foward-growing-leader로 변하게 된다.

Leader streamer의 끝 쪽 부분으로부터, 방전은 지속적으로 증가하며 이 방전의 전류 충족 조건들은 열 이온화를 도우면서 the leader의 영역을 만들게 된다. 절연 파괴는 streamer가 전극 면에 도달했을 때 시작된다.

Streamer가 전압 조건을 약 4.5kV/cm을 가지는 반면, leader는 단지 1kV/cm의 필요로 한다. 따라서, leader는 포인트의 전위(potential)을 전계 영역까지 확장을 하고 머리 부분에 해당하는 지점에서 streamer에 의한 추가 발전의 대해 준비하게 된다. 이 방식에서는, 간극(the gap)은 간헐적은 단계 방식으로 연결되게 된다. 경로의 공간 전인 발전에서의 가능성들을 통해서, 더 큰 분산제(scatter)가 파괴전압 안에서 뒤따르게 된다.

이 Ledear 메커니즘은 또한 파괴전압이 유일하게 간극(gap spacing) 공간의 증가의 관련하여 왜 미미하게 증가하는지를 설명해 준다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


실험들이 통해 알려진 것은 절연파괴의 진행은 제한되어 있는 시간이 요구된다. 짧은 시간 동안의 응력(stress)에 있어서 매우 중요하게 여겨지는데 이 부분에 있어서 자세히 다뤄보려 한다.

A) 통계적 시간 차(Statistical time lag)

만약 개시전압(Ue)보다 더 큰 전압이 균일하거나 약하게 비균일 전계와 함께 적용된다면 초기 전자가 전극의 중요 부분의 나타났을 시에만 전자사태(electron avalanche)가 시작된다.

일반적으로, 전계 방출은 전극에서 약 MV/cm 단위의 전계강도를 요구하기 때문에 이 전자들은 반드시 자연적으로 발생되거나 또는 인공적인 외부의 이온화 과정에 의해서 생성되어야 한다.

시차(파괴 전계에 도달하는 시간과 요구된 초기 전자가 등장하는 시간의 차)가 실험들마다 다르기 때문에 이것을 통계적 시간차(statistical time lag: tsv)라고 일컫는다.




Figure 1.2-11은 전극의 배열을 보여주며 모두 동일한 n0 으로 구성되어 있고 무두 상호 독립적 간극(mutually independent gaps)들로 구성되어 있다.

단계 전압(step voltage) U>Ue 이 t=0일때를 생각해 보자.

만약 n이 초기 전자들이 아직 나타나지 않은 간극(gaps)의 개수라면, 시간 간격(dt)의 따른 개수의 변화(dn)는 비례 요인(proportionality factor) 와 함께 다음과 같이 표현된다.

$dn=-kn\ dt$dn=kn dt
$\Downarrow $
$n=n_0e^{-kt}$n=n0ekt

만약 실험이 단일 간극(n0)의 시간에 대해서 수행된다면, n 은 tsv>t 보다 크게 측정된 실험의 횟수를 의미하게 된다. 연산적인 의미에서 모든 n0의 값과 tsv (v=1...n0) 는 다음과 같이 표현될 수 있다.

$t_s=\frac{1}{k}$ts=1k

전기적으로 강하게 응력 된 부피와 전계가 증가할 때 평균 통계적 시차(the mean statistical time lag)는 감소한다. 이것은 단지 μs 시간 정도의 마찰이지만 좋지 않은 경우 몇몇 더 높은 강도가 될 수 있다. 강한 비균일 전계(strongly inhomogeneous field)에서는, 적절한 수의 대전 캐리어가 선-방전(the pre-discharge)에 의해 이용 가능하다. 따라서, 통계적 시차(statistical time lag)는 완전한 절연파괴에 있어서 아무런 영향을 끼치지 않는다.

B) 형성적 시간 차 (Formative time lag)

절연파괴 메커니즘에서 정말 문제 되는 것은 대전된 캐리어의 움직임이며 대전된 캐리어는 전계(electric field)에서 그 움직임이 가속된다. 대전된 캐리어들은 제한된 강도를 가지고 있는 속도로 움직이는데 이것은 충동 전압의 응력 시간 동안 반드시 고려되어야 한다.

1차 전자사태의 시작부터 높은 전도 절연파괴 경로의 형성까지의 시간차는 "방전의 형성적 시간 차 ta"로 지정된다. 그리고 일반적으로 이 경우는 전압 붕괴 현상으로 이끈다. 각각의 적절한 메커니즘에 해당하는 프로세스들은 시간 ta 동안 일어난다.



Voltage dependence of the formative time

형성적 시간차 ta 의 적용된 단계 전압(applied step voltage) 의존도는 위의 그래프에서 보인다.

만약 오직 정적인 파괴전압 (Ud∞)만이 적용된다면, 매우 큰 값의 ta 를 가지게 된다 반면에, 매우 강한 과전압(strongly overshooting voltage)가 적용된다면, 매우 작은 값의 ta 을 얻게 된다. 비균일 전계에 관련해서 절연파괴에서의 경로의 불확실성 때문에 형성적 시간 차 (ta) 는 일정 scatter(분산)의 대상이 된다. 이것은 tav를 사용을 통해 반드시 고려되어야 할 상황이다. 가이드라인에 따르면, 형성적 시간차 ta는 대기에서( 균일 전계 그리고 약한 비균일 전계에서 5%의 과전압) 약 1μs이하로 잘 나타내어지고 이보다 높은 값은 매우 강한 비균일 전계의 값이다.

C) 충동 전압-시간 곡선(Impulse Voltage-Time Curves)

전기적으로 응력이 가해진 전극의 구조에서, 완전한 절연 파괴는 통계적 시간 차 tsv 와 형성적 시간 차 tav 의 합쳐진 시간 차 이후에 발생한다.

총 점화 시간차 tvV=tsv+tav 로 표현된다.

제한된 선두가 가파른 충동 전압에 대하여, 점화 시간 차 ( tvV)는 실제로 정적인 파괴전압 (Ud∞)을 초과하는 짧은 순간으로부터 계산된다. 완전한 절연 파괴가 일어나기 위해서, 응력이 작용하는 시간은 반드시 그의 상응하는 점화 시간 보다 길어야 한다. 만약 전극의 배열이 아주 큰 동일은 충동 전압 (충분한 강도)과 함께 응력을 받는다면, 파괴 전압(Ud) 와 절연 파괴 시간 (td)가 함께 얻어 질 수 있다.



만약 앞쪽의 위치한 경사면에서 충동 전압과 함께 측정이 반복된다면, 충동 전압과 시간 band의 관계의 위의 그림에서 나타나는 바와 같다. 그리고 이것은 파괴전압 시간 (td)의 최솟값과 최댓값이 주어진 충동 전압의 따라서 예측될 수 있다. 제한 커브 1보다 작은 충동 전압-시간 band는 절연 파괴 0%를 의미하고 제한 커브 2보다 높은 값은 100%의 절연파괴를 의미한다. 절연 시스템과 관련해서 이 낮은 제한 커브(curve 1)는 상당히 중요하게 여겨진다.

그리고 이 커브 tsv≒0 에 가깝기 때문에 형성적 시간 특성이라고 불린다. 이 충동 전압-시간 커브는 가스 절연 시스템(뇌 충동 전압의 응력을 받고 있는)을 측정할 때 매우 중요한 기초가 된다.



충동 전압-시간 커브의 계산식은 다음과 같다.

$F=\int _{t_0}^{t_d}\left[u\left(t\right)-U_b\right]dt=const.$F=tdt0[u(t)Ub]dt=const.
$F:\ the\ voltage-time\ area$F: the voltagetime area
$U_b:\ a\ reference\ voltage$Ub: a reference voltage
$formative\ time\ characteristic\ 1$formative time characteristic 1

오직 약한 비균일 전계로 구성된다면, 기준전압(Ub: reference voltage)은 개시 전압 Ue (inception voltage)와 같아지게 된다. 만약 기준전압 값이 구해지면 등면적법 (equal area criterion)은 근삿값으로 구해질 수 있다. 여러 종류의 전압이 등반된 공기 중 다른 간극들은(gaps) 몇몇의 예외를 제외하고는 등면적법이 전압-시간 행동에 있어서 만족할 만한 예상을 가져다주는 것이 확인되었다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.


와이어 같은 전극 끝 쪽 작은 곡면에서는 눈에 띌 정도로 전계(the electric field strength)의 강도가 증가한다. 따라서, 전열 파괴 전계(Ed: the breakdown field strength)는 부분적으로 발생한다. 개시 전압(inception voltage: Ue)이 초과되었을 때, 충돌 이온화 과정으로 생성된 전자와 양이온들은 쿨롱의 힘(the Coulomb forces)의 영향을 받아 생성된 지점으로 다른 지점으로 이동하게 된다 (음전성의 기체에서도, 전자들은 전자 부속(attachment) 과정을 통해 음이온을 생성할 수 있다).

한 극(polarity)에서 대전된 캐리어의 축적은 space charge field(공간전하 전계)를 형성하며 이것은 전계(the electric field) 구조 변화에 있어서 아주 큰 영향을 끼친다.

A) 불완전 절연 파괴 (Incomplete breakdown)

접지된 면에 대한 양극성 포인트의 전형적인 배열 안에서의 메커니즘은 다음과 같이 나타난다.



포인트 앞쪽에서 충돌이온화에 의해 생성된 전자들은 anode 쪽으로 끌려간다. 전계를 감소시키는 양극성의 공간전하(space charge)는 포인트 쪽에 남아있게 된다. Direct voltage에 관한 경우, 완전한 breakdown 결과 없이 상태를 유지하게 된다. 전압이 증가했을 때는, 추가적인 짧은 시간 동안 "브러시 방전(brush discharge)"현상이 약하게 빛나는 공간전하 영역으로부터 나오게 된다. 이 브러시 방전의 주파수와 영역은 파괴전압값(Ud)에서 벌어지는 완전한 절연 파괴가 나타날 때까지 전압과 함께 증가한다.



위의 그림에서 보이는 바와 같이, 접지된 면을 향하는 음극성 포인트와 관련된 특성은 다소 다른 형태를 보여준다. 다시 말하자면, 포인트 앞부분의 양극성의 공간전하(space charge)는 개시 전압(Ue:Inception voltage)를 초과했을 때 발생하지만, 전자들은 접지면의 방향으로 배회하게 된다. 만약 가스사 전자 부속(attachment of electrons)에 의해 음이온의 생성이 불가능하다면, direct voltage와 관련해서 즉각적으로 절연파괴 현상이 일어나게 될 것이다. 그 이유는, 양극성의 공간전하로 인해 포인트 앞쪽에서 추가적으로 전계 강도가 증가하는 현상이 발생한다. 즉, 정적인 불완전 안 방전은 불가능하다. 그러나, 대부분 기술적으로 사용되는 가스들 및 특히 공기에서, 음극성 이온 이루어진 공간 전하가 형성되어 포인트 앞쪽부터 충돌 이온 화가 멈추는 지점까지 전계(the electric field)를 감소시킬 수 있다. 음극성의 공간전하가 배회를 한 후에 한 번 더 방전이 시작된다. 이것의 결괏값은 펄스(pulse) 타입의 메커니즘이다. 그리고 이 결과는 외부 회로 안에서 10ns 범위의 시간 동안의 보통의 전류 펄스로 이끈다. 이 현상은 G.W. Trichel에 의해 1938년에 증명되었으며 Trichel Pulse라고 부른다.

추가적인 전압의 증가는 매우 강한 전류 브러시 방전(current brush discharge) 현상을 일으키고 심지어 negative direct 전압에도 해당하며 결국에는 완전한 절연파괴 단계(a complete breakdown voltage)로 넘어가게 된다. 펄스의 라이즈 타임(the rise time)은 약 ns 범위에 해당한다. *라이즈 타임: 펄스 진폭이 10% 차에서 90% 치에 이르기까지의 경과시간. 비록 불완전한 절연파괴의 대한 이해가 복잡하더라도, 시간의 따른 전압의 변화 역시 이전에 언급한 메커니즘이 발생한다. 전압의 변화와 관해서 주기적은 극성(periodic polarity)의 결과도 변하게 되며 충동 전압(the impulse voltage)의 관해서 제한된 시간의 방전 현상은 반드시 설명돼야 한다.

특히 전압 변화와 관련된 불완전 절연파괴에서의 방전은 기술적인 측면에서 매우 중요하다, 즉 끝부분이나 어떤 부분에서의 부분 방전 그리고 오버헤드 송전 라인에서의 코로나 방전 같은 경우를 일컫는다. 앞서 언급한 두 개의 경우 모두 대전대 펄스들은 높은 주파수의 전자기적 방해를 발생시키기 때문에 반드시 고려되어야 한다. 특히, 오버헤드라인 디자인에 있어서 중간 길이의 파장 범위에서 라디오 전파방해를 피하기 위해서 신경 써야 될 부분이다.

정적인 또는 펄스 타입의 방전(지속적인 또는 펄스 코로나)은 real power(P=V*I*cos φ)를 필요로 한다. 오버헤드라인에 있어서 이런 코로나 손실은 대기 상태에 매우 의존적이다. 강도는 보통 1~10KW/km 정도이다. 그리고 오버헤드라인과 관련해서 충분히 높은 코로나 개시 전압(onset voltage)를 달성하기 위해서는, 전도체(the conductor)의 직경(diameter)이 충분히 커야 한다. 동작전압이 100kV 이상일 경우는, 단일 전도체를 사용하기보다는 여러 개의 전도체가 묶여있는 한 묶음(bundle)을 사용한다.

Three phase(삼상)의 송전 라인은 정격전압에 있는 전도체의 표면에 rms 값의 전계강도(15KV/m) 로 디자인되었다.

B) Air 절연파괴 동안의 극성효과(Polarity effect during air break)

양전하의 캐리어는 전자(음전 하의 주요 캐리어)보다 질량이 훨씬 크다. 더 강한 전계에서의 전극이 그것의 극성을 변화시킬 때, 비대칭의 전극의 구조에 단극의 전압(unipolar voltage)가 가해진 경우, 다른 특성이 나타나야 한다.



Polarity Effect in the inhomogeneous field

만약 공기 중에서 천체 구조의 판의 간극(spacing)이 넓은 범위 안에서 변하게 되면, direct 전압의 대한 Ud(파괴전압)의 변화는 위의 그림과 같이 나타난다.

s/r<1에 해당하는 약한 비균일 전계에서는 (천체 구조의 판의 간극을 측정) 수식을 다음과 같이 나타낼 수 있다.

$U_e=U_d;\ U_{d+}\approx U_{d-}$Ue=Ud; Ud+Ud

반면에 s>>1에 해당하는 강한 비균일 전계에서는 (판의 막대 부분(rod-plate)) 수식을 다음과 같이 나타낼 수 있다.

$U_e<U_d\ ;\ U_{d+}<U_{d-}$Ue<Ud ; Ud+<Ud

파괴전압에서의 큰 편차는 약한 비균일 전계와 강한 비균일 전계의 경계 영역에서 측정된다. 큰 간극에서의 개시 전압(Ue)는 거의 일정하고 극성에 대해 독립적이다. 그리고 공간전하 무 전계(space charge free field)의 특성에 의해 설명될 수 있다. 그리고 만약 Emax=Ed 이면, 개시 전압(Ue)의 값을 얻을 수 있다.

간극이 큰 경우에는(at large gap spacings), 양극성의 파괴전압(the positive breakdown voltage)은 음극성의 파괴전압(the negative breakdown voltage)보다 훨 씩 작은 편이다. 교류전압에 있어서, polarity effect(극성 효과)는 비대칭 구조의 positive half-cycle에서 항상 절연 파괴를 일으킨다.

공기 중 더 큰 파괴전압은 (전극의 음극 성과 더 작은 직경의 곡면에서) 음극성 이온의 공간전하 전계 균일화 효과에 기인한다.

공기 중 Rod(길쭉한 막대 부분)의 파괴전압(Ud)은 고 전압(high voltage)에 관련해서 장비나 설치 기구 안의 공기 제거 디자인에 있어서 매우 중요하다. 위의 그림에서 뚜렷하게 보이듯이, 만약 파괴전압(Ud)이 개시 전압(Ue)보다 훨 씩 크다면, 곡면의 반지름(r) 은 파괴전압에 있어서 공간전하의 효과로 인해 특별한 영향을 끼치지 못한다.

실제로, 모든 비균일 구조의 간극(gap spacings)이 약 0.5m보다 크다면 rod의 간극 같은 행동들을 보여준다.

출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.




전기적 에너지의 송전 및 배전은 직류와 함께 시작되었다고 이야기할 수 있다. 1882년에 독일 Miesbach 지역과 Munich 지역의 50km를 잇는 2kV DC 트랜스미션 라인이 도입되었지만 그 당시에는 소비 전압과 더 높은 DC 트랜스미션 전압의 현실화는 오직 rotating DC 기계장치에 의해서만 가능하였다.

AC 시스템에서의 전압의 변환은 상당히 간단하며 AC 변압기는 높은 파워 레벨과 높은 절연 레벨의 사용을 용이하게 하고 전력의 손실 또한 낮다. 그리고 AC 시스템은 상대적으로 간단하며 적은 유지 비용을 필요로 한다. 나중에 서술하겠지만 Three phase의 동기발전기(Synchronous Generators)는 모든 측면에서 DC 발전기보다 상당히 이점이 많다고 알려져 왔으며 이러한 이유들 때문에 파워 시스템의 초기 모델은 AC system을 기반으로 도입되어 발전되어 왔다. 그리고 이러한 발전은 사람들에게 전기적 에너지를 송전함에 있어서 유일한 모델이라고 인식되었지만 기술이 발전함에 따라 AC transmission link의 단점들이 계속해서 발견되어 왔으며 이를 보완하기 위해 DC technology의 발전을 촉진시켰다.

현재 High-Voltage AC Transmission System이 직면한 문제들은 다음과 같다.

◆오버헤드라인 (Overhead line: 가공 전선로) 또는 케이블이 가지고 있는 Inductive 그리고 capacitive 한 요소들은 AC system에서 전력의 전송량과 전송거리에 있어서 제한을 두게 만든다.

◆그리고 이러한 제한들은 특히 케이블과 관련해서 더욱더 심하게 여겨지는데, 전력 전송량에 따라서 시스템의 주파수, 전력손실, 전송 가능한 거리가 40~100km 범위로 제한되며 대게는 충전 전류 (the charging current)에 의해서 제한된다.

◆만약 두 개의 AC system이 서로 다른 주파수를 사용하고 있으면 이 두 시스템의 직접적 연결은 불가능하다.

◆그리고 만약 두 개의 AC sytem이 설사 같은 주파수를 사용하고 있더라도 시스템의 불안정성과 원치 않는 전력의 흐름으로 인해 AC sytem 끼리의 직접적 연결은 상당히 어려운 문제이다.

이러한 HVAC의 단점들은 HVDC 기술의 발전의 필요성을 느끼게 하였다. HVDC와 HVAC system의 사용을 결정함에 있어서 기술적, 비용적, 또는 환경적 요인들이 존재하지만 여기서는 기술적인 장점에 대해서만 이야기하려 한다.

그렇다면 HVDC system이 가지고 있는 기술적인 장점들은 무엇일까?

첫 번째로는 DC 링크(link)는 설사 AC 시스템들이 주파수나 네트워크가 동일하지 않더라도 이 AC 시스템들 사이에 위치함으로써 전력의 전달을 가능하게 만든다.



또한 AC system과 다르게 inductive 그리고 capacitive 한 요소들이 DC system에서 전력의 전송량 그리고 전력의 전송거리를 결정함에 있어서 제한적 요소로 여겨지지 않는다. 추가적으로 HVDC에서는 skin effect가 존재하지 않기 때문에 전력전송에서 전도체의 단면을 완전하게 사용할 수 있다.

출처: High Voltage Direct Current Transmission-Proven Technology for Power Exchange (SIEMENS)

https://new.siemens.com/global/en.html


+ Recent posts