오염 섬락의 매커니즘 (Mechanism of Pollution flashover)
오염된 절연체의 섬락현상의 발생은 매우 복잡한 과정이며 우연에 의해서도 일어날 가능성이 있다. 따라서 몇가지 설명이 가능한 프로세스들을 예를 들어보자.
A) 건조 밴드의 형성 (Formation of dry bands)
Figure 1.6-4a 는 균일 오염 전도층 (σs)를 가지는 평면 구조를 보여준다. 이 경우 누수 전류가 흐르게 되고 이러한 누수 전류는 선형의 전위 분배를 발생시킨다. 이러한 현상은 특정한 양의 건조 오염층으로 이끌게 되고 figure 1.6-4b 처럼 부분적으로 넒은 밴드 현상을 유발 할 수 있다. 이러한 건조 밴드층에서는 다른 σs 값은 갖게되고 전류는 일시적으로 매우 작아지게 된다. 마지막으로, figure 1.6-4c 처럼 각각의 밴드는 부분적 아크(불꽃)로 인해 브릿지 현상(절연체가 전도체가 되는 현상)을 겪게되며, 결국에 완전한 섬락 현상으로 유도하게 된다.
이 경우는 만약 표면이 완전히 건조한 경우 방지되게 되고 다시 한번 선형 전위 분배를 발생할때 위험 레벨보다 훨씬 더 낮은 전류의 값을 갖게 된다. 이러한 현상은 마치 균일한 건조와 연속적인 부분 아크사이의 경쟁처럼 여겨질 수 있다.
B) 오염모델을 통한 안정성 고려(Stability considerations using the contamination model)
Figure 16.5에 따르면, 건조 밴드와 오염층을 보유한 절연체는 직렬연결의 아크(arc) 경로 길이 x 와 '균일 저항층/단위길이'의 저항에 의해 대표된다 R'=R'(I). 이 모델과 함께 연소된 아크의 연장이 또는 소멸이 조사 되어질 수 있다.
총 전압 U는 아크와 오염층을 가로지르는 부분전압으로 구성된다. 아크 전계 강도 Eb=Eb(I) 와 관련해서
방전이 소멸되는 조건에서는, 전압은 아크가 가지는 성향을 기초로한 아크 확장에 의해 얻어진다. 그리고 Eb(I)는 더 저항층읠 가로지르는 공급체로부터 사용가능한 전계보다 훨씬 더 빨리 증가하게 되는것을 추정할 수 있다.
추가적으로 추정될 수 있는것은, 아크 전압은 오직 작의 부분의 전압 U를 형성하며 전류 I는 x에 관해서 독립적이게 된다 (소멸 조건에서).
이후, 만약 특정 중요 전류 값(Ik)을 초과 했을 경우 아크의 순방향 성장이 반드시 나타나게 된다.
위의 그림은 아크의 순방향 성장과 아크의 소멸 경계면에 관한 다이어그램이다. 이 경우는 Eb와 R'가 전류가 증가할때 감소한다고 가정된다. 빗금이 쳐진 영역에서는 아크는 최종적으로 완전한 섬락현상으로 발전되게 된다. 이 경우 대략적인 Ik 의 값은 다음과 같다.
다시 말하면 특정 최대 허용전류가 존재한다면 섬락현상 또한 존재가 가능하다. 실제로, 오염층과 관련된 절연 실패에 관해서, 섬락현상 이전에 최대 누수 전류는 오염형태에 상당히 독립적인 측정값이다.
Figure 1.6-7은 누수 전류가 완전한 섬락현상으로 발전되는 과정을 보여주며 figure 1.6-4의 아이디어를 기반으로 하고 있다. 하지만 더 중요한것은 Ik에 상응하는 Uk의 값이며 이 값은 만약 아크(arc)의 길이가 중요 길이 보다 훨씬 짧다고 (x≪s) 가정되었을때 구할 수 있다.
절연체 길이 s에 관한 아크 전압의 선형적 의존성은 이미 고전압에 관하여 증명되었다. 지수 n/n+1에 관하여 0.2~0.6사이의 값들이 얻어지게 된다.
처음의 대략적인 값은 심플하게 n=1을 통해 얻어진다. 즉, 다음과 같다.
비록 이러한 복합적인 시뮬레이션 모델이 실제 조건들보다 훨씬 나을지라도, 실제적인 요소들 (즉, 실험값)들을 간과해서는 안된다.
출처: D. Kind, High-Voltage Insulation Technology. Springer Fachmedien Wiesbaden, 2011.